Neurochemical Research

, Volume 33, Issue 6, pp 1145–1149 | Cite as

Elevated Inflammatory Markers in a Group of Amyotrophic Lateral Sclerosis Patients from Northern India

  • G. Nagesh Babu
  • Alok Kumar
  • Ramesh Chandra
  • S. K. Puri
  • Jayantee Kalita
  • U. K. Misra
Original Paper


The role of cytokines in the pathophysiology of amyotrophic lateral sclerosis (ALS) and its relation to clinical outcome has not been clearly defined. We evaluated tumor necrosis factor-alpha (TNF-α), interferon-γ (IFN-γ) and nitric oxide (NO) levels in the serum of 22 ALS patients and 20 controls. Serum TNF-α levels and IFN-γ levels were significantly (P < 0.001) elevated in ALS patients. We also observed NO levels to be significantly (P < 0.05) increased with respect to normal subjects. We further noticed positive correlation between the duration of ALS and these proinflammatory molecule levels. Exitotoxicity and oxidative stress are known to play a crucial role in the neurodegeneration observed in ALS. Since high levels of TNF-α are known to be cytotoxic, it could be that a complex interplay of these effectors may be one of the factors underlying the progression of ALS. This study confirms the involvement of inflammation in ALS and the need to develop surrogate markers to check the progression of this disease.


Amyotrophic lateral sclerosis Tumor necrosis factor-α Interferon-γ Nitric oxide Inflammation 



This study was funded by a research grant awarded to G.N.B by the Council of Science and Technology, UP, India.


  1. 1.
    Tandan R, Bradley WG (1985) Amyotrophic lateral sclerosis: part 1. Clinical features, pathology, and ethical issues in management. Ann Neurol 18:271–280PubMedCrossRefGoogle Scholar
  2. 2.
    Tandan R, Bradley WG (1985) Amyotrophic lateral sclerosis: part 2. Etiopathogenesis. Ann Neurol 18:419–431PubMedCrossRefGoogle Scholar
  3. 3.
    Young AB, Penney JB, Dauth GW et al (1983) Glutamate or aspartate as a possible neurotransmitter of cerebral corticofugal fibers in the monkey. Neurology 33:1513–1516PubMedGoogle Scholar
  4. 4.
    Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42:1–11PubMedCrossRefGoogle Scholar
  5. 5.
    O’Brien RJ, Fischbach GD (1986) Modulation of embryonic chick motoneuron glutamate sensitivity by interneurons and agonists. J Neurosci 6:3290–3296PubMedGoogle Scholar
  6. 6.
    Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634PubMedCrossRefGoogle Scholar
  7. 7.
    Babu GN, Bawari M (1997) Single microinjection of l-glutamate induces oxidative stress in discrete regions of rat brain. Biochem Mol biol Int 43:1207–1217PubMedGoogle Scholar
  8. 8.
    Bawari M, Babu GN (2003) Metabolic responses in discrete regions of rat brain following acute administration of glutamate. Neurochem Res 28:1345–1349PubMedCrossRefGoogle Scholar
  9. 9.
    Babu GN, Bawari M, Mathur VN, Kalita J, Misra UK (1998) Blood glutamate levels in patients with motor neuron disease. Clin Chim Acta 273:195–200PubMedCrossRefGoogle Scholar
  10. 10.
    Silveira RC, Procianoy RS (2003) Interleukin-6 and tumor necrosis factor-alpha levels in plasma and cerebrospinal fluid of term newborn infants with hypoxic-ischemic encephalopathy. J Pediatr 143:625–629PubMedCrossRefGoogle Scholar
  11. 11.
    Ergenekon E, Gucuyener K, Erbas D et al (2004) Cerebrospinal fluid and serum vascular endothelial growth factor and nitric oxide levels in newborns with hypoxic ischemic encephalopathy. Brain Dev 26:283–286PubMedCrossRefGoogle Scholar
  12. 12.
    Fogal B, Hewett JA, Hewett SJ (2005) Interleukin-1beta potentiates neuronal injury in a variety of injury models involving energy deprivation. J Neuroimmunol 161:93–100PubMedCrossRefGoogle Scholar
  13. 13.
    Basu A, Lazovic J, Krady JK et al (2005) Interleukin-1 and the interleukin-1 type 1 receptor are essential for the progressive neurodegeneration that ensues subsequent to a mild hypoxic/ischemic injury. J Cereb Blood Flow Metab 25:17–29PubMedCrossRefGoogle Scholar
  14. 14.
    Lyng K, Munkeby BH, Saugstad OD et al (2005) Effect of interleukin-10 on newborn piglet brain following hypoxia-ischemia and endotoxin-induced inflammation. Biol Neonate 87:207–216PubMedCrossRefGoogle Scholar
  15. 15.
    Oygur N, Sonmez O, Saka O et al (1998) Predictive value of plasma and cerebrospinal fluid tumour necrosis factor-alpha and interleukin-1 beta concentrations on outcome of full term infants with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 79:F190–F193PubMedCrossRefGoogle Scholar
  16. 16.
    Moser M, Murphy KM (2000) Dendritic cell regulation of TH1–TH2 development. Nat Immunol 1:199–205PubMedCrossRefGoogle Scholar
  17. 17.
    Jensen MB, Hegelund IV, Lomholt ND et al (2000) IFN-gamma enhances microglial reactions to hippocampal axonal degeneration. J Neurosci 20:3612–3621PubMedGoogle Scholar
  18. 18.
    Pouly S, Becher B, Blain M et al (2000) Interferon-gamma modulates human oligodendrocyte susceptibility to Fas-mediated apoptosis. J Neuropathol Exp Neurol 59:280–286PubMedGoogle Scholar
  19. 19.
    Bo L, Dawson TM, Wesselingh S et al (1994) Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann Neurol 36:778–786PubMedCrossRefGoogle Scholar
  20. 20.
    Dawson VL, Dawson TM (1996) Nitric oxide neurotoxicity. J Chem Neuroanat 10:179–190PubMedCrossRefGoogle Scholar
  21. 21.
    Lee SC, Dickson DW, Liu W et al (1993) Induction of nitric oxide synthase activity in human astrocytes by interleukin-1 beta and interferon-gamma. J Neuroimmunol 46:19–24PubMedCrossRefGoogle Scholar
  22. 22.
    Moncada S, Higgs A (1993) The l-arginine–nitric oxide pathway. N Engl J Med 329:2002–2012PubMedCrossRefGoogle Scholar
  23. 23.
    Rhodes P, Leone AM, Francis PL et al (1995) The l-arginine:nitric oxide pathway is the major source of plasma nitrite in fasted humans. Biochem Biophys Res Commun 209:590–596PubMedCrossRefGoogle Scholar
  24. 24.
    Brooks BR (1994) El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Disease/Amyotrophic lateral sclerosis of the World Federation of Neurology Research group on Neuromuscular disease and the El Escorial ‘Clinical limits of amytrophic lateral sclerosis’ workshop contributors. J Neurol Sci 124(Suppl):96–107PubMedCrossRefGoogle Scholar
  25. 25.
    Norris FH, Calanchini PR, Fallat RJ et al (1974) The administration of guanidine in amyotrophic lateral sclerosis. Neurology 24:721–728PubMedGoogle Scholar
  26. 26.
    Taskiran D, Sagduyu A, Yuceyar N et al (2000) Increased cerebrospinal fluid and serum nitrite and nitrate levels in amyotrophic lateral sclerosis. Int J Neurosci 101:65–72PubMedCrossRefGoogle Scholar
  27. 27.
    Green LC, Wagner DA, Glogowski J et al (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126:131–138PubMedCrossRefGoogle Scholar
  28. 28.
    Czlonkowska A, Ciesielska A, Gromadzka G, Kurkowska-Jastrzebska I (2005) Estrogen and cytokines production—the possible cause of gender differences in neurological diseases. Curr Pharm Des 11(8):1017–1030PubMedCrossRefGoogle Scholar
  29. 29.
    Moreau C, Devos D, Brunaud-Danel V et al (2005) Elevated IL-6 and TNF-alpha levels in patients with ALS: inflammation or hypoxia? Neurology 65:1958–1960PubMedCrossRefGoogle Scholar
  30. 30.
    Poloni M, Facchetti D, Mai R et al (2000) Circulating levels of tumour necrosis factor-alpha and its soluble receptors are increased in the blood of patients with amyotrophic lateral sclerosis. Neurosci Lett 287:211–214PubMedCrossRefGoogle Scholar
  31. 31.
    Holmoy T, Roos PM, Kvale EO (2006) ALS: cytokine profile in cerebrospinal fluid T-cell clones. Amyotroph Lateral Scler 7:183–186PubMedCrossRefGoogle Scholar
  32. 32.
    Gupta RC, Milatovic D, Dettbarn WD (2002) Involvement of nitric oxide in myotoxicity produced by diisopropylphosphorofluoridate (DFP)-induced muscle hyperactivity. Arch Toxicol 76:715–726PubMedCrossRefGoogle Scholar
  33. 33.
    Watanabe T, Akishita M, Toba K, Kozaki K, Eto M, Sugimoto N, Kiuchi T, Hashimotoa M, Shirakawad W, Ouchia Y (2000) Influence of sex and age on serum nitrite/nitrate concentration in healthy subjects. Clin Chim Acta 301:169–179PubMedCrossRefGoogle Scholar
  34. 34.
    Salter M, Duffy C, Garthwaite J Strijbos PJ (1996) Ex vivo measurement of brain tissue nitrite and nitrate accurately reflects nitric oxide synthase activity in vivo. J Neurochem 66:1683–1690PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • G. Nagesh Babu
    • 1
  • Alok Kumar
    • 1
  • Ramesh Chandra
    • 1
    • 2
  • S. K. Puri
    • 1
    • 2
  • Jayantee Kalita
    • 1
  • U. K. Misra
    • 1
  1. 1.Department of NeurologySanjay Gandhi Postgraduate Institute of Medical SciencesLucknowIndia
  2. 2.Division of ParasitologyCentral Drug Research InstituteLucknowIndia

Personalised recommendations