Skip to main content
Log in

Chronic Administration of Lamotrigine Downregulates COX-2 mRNA and Protein in Rat Frontal Cortex

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Chronic administration to rats of mood-stabilizers that are effective against mania in bipolar disorder, is reported to downregulate markers of the brain arachidonic acid cascade. We hypothesized that chronic administration of lamotrigine, which is used to treat depression and rapid cycling in bipolar disorder, might do so as well. Male CDF rats were administered a therapeutically relevant dose of lamotrigine (10 mg/kg) or vehicle intragastrically once daily for 42 days. Protein levels of isoforms of phospholipase A2 (PLA2) and of cyclooxygenase (COX), and the mRNA level of COX-2, were quantified in the frontal cortex using immunoblotting and RT-PCR, respectively. Compared to vehicle-treated rats, chronic lamotrigine significantly decreased frontal cortex protein and mRNA levels of COX-2 without altering protein levels of the PLA2 isoforms. Consistent with the hypothesis, lamotrigine and other mood-stabilizers have a common downregulatory action on COX-2 expression in rat brain, which may account in part for their efficacy in bipolar disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

COX:

Cyclooxygenase

cPLA2 :

Calcium-dependent cytosolich phospholipase A2

iPLA2 :

Calcium-independent phospholipase A2

sPLA2 :

Secretory phospholipase A2

Sn :

Stereospecifically numbered

References

  1. Calabrese JR, Bowden CL, Sachs GS, Ascher JA, Monaghan E, Rudd GD (1999) A double-blind placebo-controlled study of lamotrigine monotherapy in outpatients with bipolar I depression. Lamictal 602 Study Group. J Clin Psychiatry 60:79–88

    Article  PubMed  CAS  Google Scholar 

  2. Calabrese JR, Rapport DJ, Youngstrom EA, Jackson K, Bilali S, Findling RL (2005) New data on the use of lithium, divalproate, and lamotrigine in rapid cycling bipolar disorder. Eur Psychiatry 20:92–95

    Article  PubMed  CAS  Google Scholar 

  3. Hassel B, Tauboll E, Gjerstad L (2001) Chronic lamotrigine treatment increases rat hippocampal GABA shunt activity and elevates cerebral taurine levels. Epilepsy Res 43:153–163

    Article  PubMed  CAS  Google Scholar 

  4. Ahmad S, Fowler LJ, Whitton PS (2004) Effect of acute and chronic lamotrigine on basal and stimulated extracellular 5-hydroxytryptamine and dopamine in the hippocampus of the freely moving rat. Br J Pharmacol 142:136–142

    Article  PubMed  CAS  Google Scholar 

  5. Ahmad S, Fowler LJ, Whitton PS (2005) Effects of combined lamotrigine and valproate on basal and stimulated extracellular amino acids and monoamines in the hippocampus of freely moving rats. Naunyn-Schmiedeberg’s Arch Pharmacol 371:1–8

    Article  CAS  Google Scholar 

  6. Channon JY, Leslie CC (1990) A calcium-dependent mechanism for associating a soluble arachidonoyl-hydrolyzing phospholipase A2 with membrane in the macrophage cell line RAW 264.7. J Biol Chem 265:5409–5413

    PubMed  CAS  Google Scholar 

  7. Kaufmann WE, Worley PF, Pegg J, Bremer M, Isakson P (1996) COX-2, a synaptically induced enzyme, is expressed by excitatory neurons at postsynaptic sites in rat cerebral cortex. Proc Natl Acad Sci USA 93:2317–2321

    Article  PubMed  CAS  Google Scholar 

  8. Murakami M, Shimbara S, Kambe T, Kuwata H, Winstead MV, Tischfield JA, Kudo I (1998) The functions of five distinct mammalian phospholipase A2S in regulating arachidonic acid release. Type IIa and type V secretory phospholipase A2S are functionally redundant and act in concert with cytosolic phospholipase A2. J Biol Chem 273:14411–14423

    Article  PubMed  CAS  Google Scholar 

  9. Lands WEM, Crawford CG (1976) Enzymes of membrane phospholipid metabolism. Plenum, New York, pp 3–85

    Google Scholar 

  10. Leslie JB, Watkins WD (1985) Eicosanoids in the central nervous system. J Neurosurg 63:659–668

    Article  PubMed  CAS  Google Scholar 

  11. O’Banion MK (1999) Cyclooxygenase-2: molecular biology, pharmacology, and neurobiology. Crit Rev Neurobiol 13:45–82

    PubMed  CAS  Google Scholar 

  12. Bazinet RP, Rao JS, Chang L, Rapoport SI, Lee HJ (2006) Chronic carbamazepine decreases the incorporation rate and turnover of arachidonic acid but not docosahexaenoic acid in brain phospholipids of the unanesthetized rat: relevance to bipolar disorder. Biol Psychiatry 59:401–407

    Article  PubMed  CAS  Google Scholar 

  13. Chang MC, Contreras MA, Rosenberger TA, Rintala JJ, Bell JM, Rapoport SI (2001) Chronic valproate treatment decreases the in vivo turnover of arachidonic acid in brain phospholipids: a possible common effect of mood stabilizers. J Neurochem 77:796–803

    Article  PubMed  CAS  Google Scholar 

  14. Chang MC, Grange E, Rabin O, Bell JM, Allen DD, Rapoport SI (1996) Lithium decreases turnover of arachidonate in several brain phospholipids. Neurosci Lett 220:171–174

    Article  PubMed  CAS  Google Scholar 

  15. Ghelardoni S, Tomita YA, Bell JM, Rapoport SI, Bosetti F (2004) Chronic carbamazepine selectively downregulates cytosolic phospholipase A2 expression and cyclooxygenase activity in rat brain. Biol Psychiatry 56:248–254

    Article  PubMed  CAS  Google Scholar 

  16. Rao JS, Bazinet RP, Rapoport SI, Lee HJ (2007) Chronic treatment of rats with sodium valproate downregulates frontal cortex NF-kappaB DNA binding activity and COX-2 mRNA. Bipolar Disord 9:513–520

    Article  PubMed  CAS  Google Scholar 

  17. Rintala J, Seemann R, Chandrasekaran K, Rosenberger TA, Chang L, Contreras MA, Contreras MA, Rapoport SI, Chang MC (1999) 85 kDa cytosolic phospholipase A2 is a target for chronic lithium in rat brain. Neuroreport 10:3887–3890

    Article  PubMed  CAS  Google Scholar 

  18. Rao JS, Bazinet RP, Rapoport SI, Lee HJ (2007) Chronic administration of carbamazepine down-regulates AP-2 DNA-binding activity and AP-2alpha protein expression in rat frontal cortex. Biol Psychiatry 61:154–161

    Article  PubMed  CAS  Google Scholar 

  19. Rao JS, Rapoport SI, Bosetti F (2005) Decrease in the AP-2 DNA-binding activity and in the protein expression of AP-2 alpha and AP-2 beta in frontal cortex of rats treated with lithium for 6 weeks. Neuropsychopharmacology 30:2006–2013

    Article  PubMed  CAS  Google Scholar 

  20. Bosetti F, Rintala J, Seemann R, Rosenberger TA, Contreras MA, Rapoport SI, Chang MC (2002) Chronic lithium downregulates cyclooxygenase-2 activity and prostaglandin E(2) concentration in rat brain. Mol Psychiatry 7:845–850

    Article  PubMed  CAS  Google Scholar 

  21. Bosetti F, Weerasinghe GR, Rosenberger TA, Rapoport SI (2003) Valproic acid down-regulates the conversion of arachidonic acid to eicosanoids via cyclooxygenase-1 and -2 in rat brain. J Neurochem 85:690–696

    Article  PubMed  CAS  Google Scholar 

  22. McElroy SL, Suppes T, Keck PE, Frye MA, Denicoff KD, Altshuler LL, Brown ES, Nolen WA, Kupka RW, Rochussen J, Leverich GS, Post RM (2000) Open-label adjunctive topiramate in the treatment of bipolar disorders. Biol Psychiatry 47:1025–1033

    Article  PubMed  CAS  Google Scholar 

  23. Kushner SF, Khan A, Lane R, Olson WH (2006) Topiramate monotherapy in the management of acute mania: results of four double-blind placebo-controlled trials. Bipolar Disord 8:15–27

    Article  PubMed  CAS  Google Scholar 

  24. Ghelardoni S, Bazinet RP, Rapoport SI, Bosetti F (2005) Topiramate does not alter expression in rat brain of enzymes of arachidonic acid metabolism. Psychopharmacology (Berl) 180:523–529

    Article  CAS  Google Scholar 

  25. Lee HJ, Ghelardoni S, Chang L, Bosetti F, Rapoport SI, Bazinet RP (2005) Topiramate does not alter the kinetics of arachidonic or docosahexaenoic acid in brain phospholipids of the unanesthetized rat. Neurochem Res 30:677–683

    Article  PubMed  CAS  Google Scholar 

  26. Feder R (1990) Fluoxetine-induced mania. J Clin Psychiatry 51:524–525

    PubMed  CAS  Google Scholar 

  27. Bowden CL, Calabrese JR, Sachs G, Yatham LN, Asghar SA, Hompland M, Montgomery P, Earl N, Smoot TM, DeVeaugh-Geiss J (2003) A placebo-controlled 18-month trial of lamotrigine and lithium maintenance treatment in recently manic or hypomanic patients with bipolar I disorder. Arch Gen Psychiatry 60:392–400

    Article  PubMed  CAS  Google Scholar 

  28. Fatemi SH, Rapport DJ, Calabrese JR, Thuras P (1997) Lamotrigine in rapid-cycling bipolar disorder. J Clin Psychiatry 58:522–527

    PubMed  CAS  Google Scholar 

  29. Lee HJ, Rao JS, Chang L, Rapoport SI, Bazinet RP (2007) Chronic lamotrigine does not alter the turnover of arachidonic acid within brain phospholipids of the unanesthetized rat: implications for the treatment of bipolar disorder. Psychopharmacology (Berl) 193:467–474

    Article  CAS  Google Scholar 

  30. Lyoo IK, Kim MJ, Stoll AL, Demopulos CM, Parow AM, Dager SR, Friedman SD, Dunner DL, Renshaw PF (2004) Frontal lobe gray matter density decreases in bipolar I disorder. Biol Psychiatry 55:648–651

    Article  PubMed  Google Scholar 

  31. Rajkowska G (2002) Cell pathology in bipolar disorder. Bipolar Disord 4:105–116

    Article  PubMed  Google Scholar 

  32. Doose DR, Brodie MJ, Wilson EA, Chadwick D, Oxbury J, Berry DJ, Schwabe S, Bialer M (2003) Topiramate and lamotrigine pharmacokinetics during repetitive monotherapy and combination therapy in epilepsy patients. Epilepsia 44:917–922

    Article  PubMed  CAS  Google Scholar 

  33. Rao JS, Ertley RN, Lee HJ, Rapoport SI, Bazinet RP (2006) Chronic fluoxetine upregulates activity, protein and mRNA levels of cytosolic phospholipase A2 in rat frontal cortex. Pharmacogenomics J 6:413–420

    Article  PubMed  CAS  Google Scholar 

  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  35. Rapoport SI, Bosetti F (2002) Do lithium and anticonvulsants target the brain arachidonic acid cascade in bipolar disorder? Arch Gen Psychiatry 59:592–596

    Article  PubMed  CAS  Google Scholar 

  36. Sachs GS, Nierenberg AA, Calabrese JR, Marangell LB, Wisniewski SR, Gyulai L, Friedman ES, Bowden CL, Fossey MD, Ostacher MJ, Ketter TA, Patel J, Hauser P, Rapport D, Martinez JM, Allen MH, Miklowitz DJ, Otto MW, Dennehy EB, Thase ME (2007) Effectiveness of adjunctive antidepressant treatment for bipolar depression. N Engl J Med 356:1711–1722

    Article  PubMed  CAS  Google Scholar 

  37. Lee HJ, Rao JS, Ertley RN, Chang L, Rapoport SI, Bazinet RP (2007) Chronic fluoxetine increases cytosolic phospholipase A(2) activity and arachidonic acid turnover in brain phospholipids of the unanesthetized rat. Psychopharmacology (Berl) 190:103–115

    Article  CAS  Google Scholar 

  38. Muller N, Schwarz MJ, Dehning S, Douhe A, Cerovecki A, Goldstein-Muller B, Spellmann I, Hetzel G, Maino K, Kleindienst N, Moller HJ, Arolt V, Riedel M (2006) The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry 11:680–684

    Article  PubMed  CAS  Google Scholar 

  39. Soares JC, Nery FG, Monkul ES, Fonseca M, Zunta GB, Frey BN, Hatch JP (2006) A COX-2 inhibitor (celecoxib) as a possible adjunctive agent to expedite treatment response in bipolar depression. ACNP Program No 71

  40. Dembo G, Park SB, Kharasch ED (2005) Central nervous system concentrations of cyclooxygenase-2 inhibitors in humans. Anesthesiology 102:409–415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Bjornar Hassel for his valuable comments on the study design. This work was entirely supported by the Intramural Research Program of the National Institute on Aging, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagadeesh S. Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HJ., Ertley, R.N., Rapoport, S.I. et al. Chronic Administration of Lamotrigine Downregulates COX-2 mRNA and Protein in Rat Frontal Cortex. Neurochem Res 33, 861–866 (2008). https://doi.org/10.1007/s11064-007-9526-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9526-3

Keywords

Navigation