Neurochemical Research

, Volume 33, Issue 5, pp 861–866 | Cite as

Chronic Administration of Lamotrigine Downregulates COX-2 mRNA and Protein in Rat Frontal Cortex

  • Ho-Joo Lee
  • Renee N. Ertley
  • Stanley I. Rapoport
  • Richard P. Bazinet
  • Jagadeesh S. Rao
Original Paper


Chronic administration to rats of mood-stabilizers that are effective against mania in bipolar disorder, is reported to downregulate markers of the brain arachidonic acid cascade. We hypothesized that chronic administration of lamotrigine, which is used to treat depression and rapid cycling in bipolar disorder, might do so as well. Male CDF rats were administered a therapeutically relevant dose of lamotrigine (10 mg/kg) or vehicle intragastrically once daily for 42 days. Protein levels of isoforms of phospholipase A2 (PLA2) and of cyclooxygenase (COX), and the mRNA level of COX-2, were quantified in the frontal cortex using immunoblotting and RT-PCR, respectively. Compared to vehicle-treated rats, chronic lamotrigine significantly decreased frontal cortex protein and mRNA levels of COX-2 without altering protein levels of the PLA2 isoforms. Consistent with the hypothesis, lamotrigine and other mood-stabilizers have a common downregulatory action on COX-2 expression in rat brain, which may account in part for their efficacy in bipolar disorder.


Lamotrigine Brain Arachidonic acid cPLA2 COX-2 Bipolar disorder 





Calcium-dependent cytosolich phospholipase A2


Calcium-independent phospholipase A2


Secretory phospholipase A2


Stereospecifically numbered



We thank Dr. Bjornar Hassel for his valuable comments on the study design. This work was entirely supported by the Intramural Research Program of the National Institute on Aging, National Institutes of Health.


  1. 1.
    Calabrese JR, Bowden CL, Sachs GS, Ascher JA, Monaghan E, Rudd GD (1999) A double-blind placebo-controlled study of lamotrigine monotherapy in outpatients with bipolar I depression. Lamictal 602 Study Group. J Clin Psychiatry 60:79–88PubMedCrossRefGoogle Scholar
  2. 2.
    Calabrese JR, Rapport DJ, Youngstrom EA, Jackson K, Bilali S, Findling RL (2005) New data on the use of lithium, divalproate, and lamotrigine in rapid cycling bipolar disorder. Eur Psychiatry 20:92–95PubMedCrossRefGoogle Scholar
  3. 3.
    Hassel B, Tauboll E, Gjerstad L (2001) Chronic lamotrigine treatment increases rat hippocampal GABA shunt activity and elevates cerebral taurine levels. Epilepsy Res 43:153–163PubMedCrossRefGoogle Scholar
  4. 4.
    Ahmad S, Fowler LJ, Whitton PS (2004) Effect of acute and chronic lamotrigine on basal and stimulated extracellular 5-hydroxytryptamine and dopamine in the hippocampus of the freely moving rat. Br J Pharmacol 142:136–142PubMedCrossRefGoogle Scholar
  5. 5.
    Ahmad S, Fowler LJ, Whitton PS (2005) Effects of combined lamotrigine and valproate on basal and stimulated extracellular amino acids and monoamines in the hippocampus of freely moving rats. Naunyn-Schmiedeberg’s Arch Pharmacol 371:1–8CrossRefGoogle Scholar
  6. 6.
    Channon JY, Leslie CC (1990) A calcium-dependent mechanism for associating a soluble arachidonoyl-hydrolyzing phospholipase A2 with membrane in the macrophage cell line RAW 264.7. J Biol Chem 265:5409–5413PubMedGoogle Scholar
  7. 7.
    Kaufmann WE, Worley PF, Pegg J, Bremer M, Isakson P (1996) COX-2, a synaptically induced enzyme, is expressed by excitatory neurons at postsynaptic sites in rat cerebral cortex. Proc Natl Acad Sci USA 93:2317–2321PubMedCrossRefGoogle Scholar
  8. 8.
    Murakami M, Shimbara S, Kambe T, Kuwata H, Winstead MV, Tischfield JA, Kudo I (1998) The functions of five distinct mammalian phospholipase A2S in regulating arachidonic acid release. Type IIa and type V secretory phospholipase A2S are functionally redundant and act in concert with cytosolic phospholipase A2. J Biol Chem 273:14411–14423PubMedCrossRefGoogle Scholar
  9. 9.
    Lands WEM, Crawford CG (1976) Enzymes of membrane phospholipid metabolism. Plenum, New York, pp 3–85Google Scholar
  10. 10.
    Leslie JB, Watkins WD (1985) Eicosanoids in the central nervous system. J Neurosurg 63:659–668PubMedCrossRefGoogle Scholar
  11. 11.
    O’Banion MK (1999) Cyclooxygenase-2: molecular biology, pharmacology, and neurobiology. Crit Rev Neurobiol 13:45–82PubMedGoogle Scholar
  12. 12.
    Bazinet RP, Rao JS, Chang L, Rapoport SI, Lee HJ (2006) Chronic carbamazepine decreases the incorporation rate and turnover of arachidonic acid but not docosahexaenoic acid in brain phospholipids of the unanesthetized rat: relevance to bipolar disorder. Biol Psychiatry 59:401–407PubMedCrossRefGoogle Scholar
  13. 13.
    Chang MC, Contreras MA, Rosenberger TA, Rintala JJ, Bell JM, Rapoport SI (2001) Chronic valproate treatment decreases the in vivo turnover of arachidonic acid in brain phospholipids: a possible common effect of mood stabilizers. J Neurochem 77:796–803PubMedCrossRefGoogle Scholar
  14. 14.
    Chang MC, Grange E, Rabin O, Bell JM, Allen DD, Rapoport SI (1996) Lithium decreases turnover of arachidonate in several brain phospholipids. Neurosci Lett 220:171–174PubMedCrossRefGoogle Scholar
  15. 15.
    Ghelardoni S, Tomita YA, Bell JM, Rapoport SI, Bosetti F (2004) Chronic carbamazepine selectively downregulates cytosolic phospholipase A2 expression and cyclooxygenase activity in rat brain. Biol Psychiatry 56:248–254PubMedCrossRefGoogle Scholar
  16. 16.
    Rao JS, Bazinet RP, Rapoport SI, Lee HJ (2007) Chronic treatment of rats with sodium valproate downregulates frontal cortex NF-kappaB DNA binding activity and COX-2 mRNA. Bipolar Disord 9:513–520PubMedCrossRefGoogle Scholar
  17. 17.
    Rintala J, Seemann R, Chandrasekaran K, Rosenberger TA, Chang L, Contreras MA, Contreras MA, Rapoport SI, Chang MC (1999) 85 kDa cytosolic phospholipase A2 is a target for chronic lithium in rat brain. Neuroreport 10:3887–3890PubMedCrossRefGoogle Scholar
  18. 18.
    Rao JS, Bazinet RP, Rapoport SI, Lee HJ (2007) Chronic administration of carbamazepine down-regulates AP-2 DNA-binding activity and AP-2alpha protein expression in rat frontal cortex. Biol Psychiatry 61:154–161PubMedCrossRefGoogle Scholar
  19. 19.
    Rao JS, Rapoport SI, Bosetti F (2005) Decrease in the AP-2 DNA-binding activity and in the protein expression of AP-2 alpha and AP-2 beta in frontal cortex of rats treated with lithium for 6 weeks. Neuropsychopharmacology 30:2006–2013PubMedCrossRefGoogle Scholar
  20. 20.
    Bosetti F, Rintala J, Seemann R, Rosenberger TA, Contreras MA, Rapoport SI, Chang MC (2002) Chronic lithium downregulates cyclooxygenase-2 activity and prostaglandin E(2) concentration in rat brain. Mol Psychiatry 7:845–850PubMedCrossRefGoogle Scholar
  21. 21.
    Bosetti F, Weerasinghe GR, Rosenberger TA, Rapoport SI (2003) Valproic acid down-regulates the conversion of arachidonic acid to eicosanoids via cyclooxygenase-1 and -2 in rat brain. J Neurochem 85:690–696PubMedCrossRefGoogle Scholar
  22. 22.
    McElroy SL, Suppes T, Keck PE, Frye MA, Denicoff KD, Altshuler LL, Brown ES, Nolen WA, Kupka RW, Rochussen J, Leverich GS, Post RM (2000) Open-label adjunctive topiramate in the treatment of bipolar disorders. Biol Psychiatry 47:1025–1033PubMedCrossRefGoogle Scholar
  23. 23.
    Kushner SF, Khan A, Lane R, Olson WH (2006) Topiramate monotherapy in the management of acute mania: results of four double-blind placebo-controlled trials. Bipolar Disord 8:15–27PubMedCrossRefGoogle Scholar
  24. 24.
    Ghelardoni S, Bazinet RP, Rapoport SI, Bosetti F (2005) Topiramate does not alter expression in rat brain of enzymes of arachidonic acid metabolism. Psychopharmacology (Berl) 180:523–529CrossRefGoogle Scholar
  25. 25.
    Lee HJ, Ghelardoni S, Chang L, Bosetti F, Rapoport SI, Bazinet RP (2005) Topiramate does not alter the kinetics of arachidonic or docosahexaenoic acid in brain phospholipids of the unanesthetized rat. Neurochem Res 30:677–683PubMedCrossRefGoogle Scholar
  26. 26.
    Feder R (1990) Fluoxetine-induced mania. J Clin Psychiatry 51:524–525PubMedGoogle Scholar
  27. 27.
    Bowden CL, Calabrese JR, Sachs G, Yatham LN, Asghar SA, Hompland M, Montgomery P, Earl N, Smoot TM, DeVeaugh-Geiss J (2003) A placebo-controlled 18-month trial of lamotrigine and lithium maintenance treatment in recently manic or hypomanic patients with bipolar I disorder. Arch Gen Psychiatry 60:392–400PubMedCrossRefGoogle Scholar
  28. 28.
    Fatemi SH, Rapport DJ, Calabrese JR, Thuras P (1997) Lamotrigine in rapid-cycling bipolar disorder. J Clin Psychiatry 58:522–527PubMedGoogle Scholar
  29. 29.
    Lee HJ, Rao JS, Chang L, Rapoport SI, Bazinet RP (2007) Chronic lamotrigine does not alter the turnover of arachidonic acid within brain phospholipids of the unanesthetized rat: implications for the treatment of bipolar disorder. Psychopharmacology (Berl) 193:467–474CrossRefGoogle Scholar
  30. 30.
    Lyoo IK, Kim MJ, Stoll AL, Demopulos CM, Parow AM, Dager SR, Friedman SD, Dunner DL, Renshaw PF (2004) Frontal lobe gray matter density decreases in bipolar I disorder. Biol Psychiatry 55:648–651PubMedCrossRefGoogle Scholar
  31. 31.
    Rajkowska G (2002) Cell pathology in bipolar disorder. Bipolar Disord 4:105–116PubMedCrossRefGoogle Scholar
  32. 32.
    Doose DR, Brodie MJ, Wilson EA, Chadwick D, Oxbury J, Berry DJ, Schwabe S, Bialer M (2003) Topiramate and lamotrigine pharmacokinetics during repetitive monotherapy and combination therapy in epilepsy patients. Epilepsia 44:917–922PubMedCrossRefGoogle Scholar
  33. 33.
    Rao JS, Ertley RN, Lee HJ, Rapoport SI, Bazinet RP (2006) Chronic fluoxetine upregulates activity, protein and mRNA levels of cytosolic phospholipase A2 in rat frontal cortex. Pharmacogenomics J 6:413–420PubMedCrossRefGoogle Scholar
  34. 34.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  35. 35.
    Rapoport SI, Bosetti F (2002) Do lithium and anticonvulsants target the brain arachidonic acid cascade in bipolar disorder? Arch Gen Psychiatry 59:592–596PubMedCrossRefGoogle Scholar
  36. 36.
    Sachs GS, Nierenberg AA, Calabrese JR, Marangell LB, Wisniewski SR, Gyulai L, Friedman ES, Bowden CL, Fossey MD, Ostacher MJ, Ketter TA, Patel J, Hauser P, Rapport D, Martinez JM, Allen MH, Miklowitz DJ, Otto MW, Dennehy EB, Thase ME (2007) Effectiveness of adjunctive antidepressant treatment for bipolar depression. N Engl J Med 356:1711–1722PubMedCrossRefGoogle Scholar
  37. 37.
    Lee HJ, Rao JS, Ertley RN, Chang L, Rapoport SI, Bazinet RP (2007) Chronic fluoxetine increases cytosolic phospholipase A(2) activity and arachidonic acid turnover in brain phospholipids of the unanesthetized rat. Psychopharmacology (Berl) 190:103–115CrossRefGoogle Scholar
  38. 38.
    Muller N, Schwarz MJ, Dehning S, Douhe A, Cerovecki A, Goldstein-Muller B, Spellmann I, Hetzel G, Maino K, Kleindienst N, Moller HJ, Arolt V, Riedel M (2006) The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry 11:680–684PubMedCrossRefGoogle Scholar
  39. 39.
    Soares JC, Nery FG, Monkul ES, Fonseca M, Zunta GB, Frey BN, Hatch JP (2006) A COX-2 inhibitor (celecoxib) as a possible adjunctive agent to expedite treatment response in bipolar depression. ACNP Program No 71Google Scholar
  40. 40.
    Dembo G, Park SB, Kharasch ED (2005) Central nervous system concentrations of cyclooxygenase-2 inhibitors in humans. Anesthesiology 102:409–415PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ho-Joo Lee
    • 1
  • Renee N. Ertley
    • 1
  • Stanley I. Rapoport
    • 1
  • Richard P. Bazinet
    • 1
    • 2
  • Jagadeesh S. Rao
    • 1
  1. 1.Brain Physiology and Metabolism SectionNational Institute on Aging, National Institutes of HealthBethesdaUSA
  2. 2.Department of Nutritional Sciences, Faculty of MedicineUniversity of TorontoTorontoCanada

Personalised recommendations