Advertisement

Neurochemical Research

, Volume 33, Issue 4, pp 643–651 | Cite as

α4β2-Nicotinic Receptor Binding with 5-IA in Alzheimer’s Disease: Methods of Scan Analysis

  • Emma Terrière
  • Mike Sharman
  • Claire Donaghey
  • Lucie Herrmann
  • Jane Lonie
  • Marion Strachan
  • Nadine Dougall
  • Jonathan Best
  • Klaus P. Ebmeier
  • Sally Pimlott
  • Jim Patterson
  • David Wyper
Original Paper

Abstract

Five patients with Alzheimer’s disease and five healthy volunteers were examined by SPECT with the nicotinic receptor ligand 123I-5-IA-85380. Patients were scanned before and after 6 weeks of treatment with donepezil. Quantification by regions of interest was reliable and the optimal normalisation procedure used cerebellar ratios. We found relative reductions in 5-IA binding capacity in patients in thalamus, frontal and central regions of interest of approximately one standard deviation unit (Cohen’s d = 1). Reductions in binding after treatment with the acetylcholinesterase inhibitor donepezil of the same magnitude occurred in the brain stem. The study was clearly too small to confirm group differences, but it suggests that 5-IA can be used to examine both group differences and treatment effects in patients with Alzheimer’s disease.

Keywords

Alzheimer’s disease Dementia Nicotinic acetylcholine receptors Single photon emission tomography 

Notes

Acknowledgements

This work was supported by the Gordon Small Charitable Trust and the European Commission Network of Excellence "Diagnostic Molecular Imaging" (FP6-LIFESCIHEALTH Project Reference: 512146).

References

  1. 1.
    Martin-Ruiz C, Court J, Lee M, Piggott M, Johnson M, Ballard C, Kalaria R, Perry R, Perry E (2000) Nicotinic receptors in dementia of Alzheimer, Lewy body and vascular types. Acta Neurol Scand Suppl 176:34–41PubMedCrossRefGoogle Scholar
  2. 2.
    Martin-Ruiz CM, Court JA, Molnar E, Lee M, Gotti C, Mamalaki A, Tsouloufis T, Tzartos S, Ballard C, Perry RH, Perry EK (1999) Alpha4 but not alpha3 and alpha7 nicotinic acetylcholine receptor subunits are lost from the temporal cortex in Alzheimer’s disease. J Neurochem 73:1635–1640PubMedCrossRefGoogle Scholar
  3. 3.
    Wevers A, Monteggia L, Nowacki S, Bloch W, Schutz U, Lindstrom J, Pereira EFR, Eisenberg H, Giacobini E, de Vos RAI, Steur ENHJ, Maelicke A, Albuquerque EX, Schroder H (1999) Expression of nicotinic acetylcholine receptor subunits in the cerebral cortex in Alzheimer’s disease: histotopographical correlation with amyloid plaques and hyperphosphorylated-tau protein. Eur J Neurosci 11:2551–2565PubMedCrossRefGoogle Scholar
  4. 4.
    Burghaus L, Schutz U, Krempel U, de Vos RAI, Jansen Steur ENH, Wevers A, Lindstrom J, Schroder H (2000) Quantitative assessment of nicotinic acetylcholine receptor proteins in the cerebral cortex of Alzheimer patients. Mol Brain Res 76:385–388PubMedCrossRefGoogle Scholar
  5. 5.
    Dougall NJ, Bruggink S, Ebmeier KP (2004) Systematic review of the diagnostic accuracy of 99mTc-HMPAO-SPECT in dementia. Am J Geriatr Psychiatry 12:554–570PubMedCrossRefGoogle Scholar
  6. 6.
    Mukhin AG, Gundisch D, Horti AG, Koren AO, Tamagnan G, Kimes AS, Chambers J, Vaupel DB, King SL, Picciotto MR, Innis RB, London ED (2000) 5-Iodo-A-85380, an alpha4beta2 subtype-selective ligand for nicotinic acetylcholine receptors. Mol Pharmacol 57:642–649PubMedGoogle Scholar
  7. 7.
    Pimlott SL, Piggott M, Owens J, Greally E, Court JA, Jaros E, Perry RH, Perry EK, Wyper D (2004) Nicotinic acetylcholine receptor distribution in Alzheimer’s disease, dementia with Lewy bodies, Parkinson’s disease, and vascular dementia: in vitro binding study using 5-[(125)i]-a-85380. Neuropsychopharmacology 29:108–116PubMedCrossRefGoogle Scholar
  8. 8.
    Mamede M, Ishizu K, Ueda M, Mukai T, Iida Y, Fukuyama H, Saga T, Saji H (2004) Quantification of human nicotinic acetylcholine receptors with 123I-5IA SPECT. J Nucl Med 45:1458–1470PubMedGoogle Scholar
  9. 9.
    Fujita M, Seibyl JP, Vaupel DB, Tamagnan G, Early M, Zoghbi SS, Baldwin RM, Horti AG, Koren AO, Mukhin AG, Khan S, Bozkurt A, Kimes AS, London ED, Innis RB (2002) Whole-body biodistribution, radiation absorbed dose, and brain SPET imaging with [123I]5-I-A-85380 in healthy human subjects. Eur J Nucl Med Mol Imaging 29:183–190PubMedCrossRefGoogle Scholar
  10. 10.
    Vaupel DB, Huso D, Tella S, Horti A, Koren A, Baum I, London ED, Kimes AS (2000) Acute toxicity and safety studies of 5-I-A-85380 and 2-F-A-85380, new radiotracers for imaging nicotinic acetylcholine receptors (nAChRs). Neuroscience 26:627Google Scholar
  11. 11.
    Mathuranath PS, Nestor PJ, Berrios GE, Rakowicz W, Hodges JR (2000) A brief cognitive test battery to differentiate Alzheimer’s disease and frontotemporal dementia. Neurology 55:1613–1620PubMedGoogle Scholar
  12. 12.
    McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34:939–944PubMedGoogle Scholar
  13. 13.
    World Health Organisation (1993) ICD-10. International classification of diseases version 10. WHO, GenevaGoogle Scholar
  14. 14.
    Rosen WG, Terry RD, Fuld EA, Katzman R, Peck A (1980) Pathological verification of ischemic score in differentiation of dementias. Ann Neurol 7:486–488PubMedCrossRefGoogle Scholar
  15. 15.
    The Lund and Manchester Groups (1994) Clinical and neuropathological criteria for frontotemporal dementia. J Neurol Neurosurg Psychiatry 57:416–418Google Scholar
  16. 16.
    Yesavage JA (1988) Geriatric depression scale. Psychopharmacol Bull 24:709–711PubMedGoogle Scholar
  17. 17.
    Baddeley A, Wilson BA (1994) When implicit learning fails: amnesia and the problem of error elimination. Neuropsychologia 32:53–68PubMedCrossRefGoogle Scholar
  18. 18.
    Benedict RHB, Schretlen D, Groninger L, Brandt J (1998) Hopkins verbal learning test—revised: normative data and analysis of inter-form and test–retest reliability. Clin Neuropsychol 12:43–55CrossRefGoogle Scholar
  19. 19.
    Harrison JE, Buxton P, Husain M, Wise R (2000) Short test of semantic and phonological fluency: normal performance, validity and test–retest reliability. Br J Clin Psychol 39:181–191PubMedCrossRefGoogle Scholar
  20. 20.
    Benton AL, Hamsher K, Sivan AB (1994) Multilingual aphasia examination. AJA Associates, Iowa CityGoogle Scholar
  21. 21.
    Kaplan E, Goodglass H, Weintraub S (1983) Boston naming test. Lea and Febiger, PhiladelphiaGoogle Scholar
  22. 22.
    Soonawala D, Amin T, Ebmeier KP, Steele JD, Dougall NJ, Best J, Migneco O, Nobili F, Scheidhauer K (2002) Statistical parametric mapping of 99mTc-HMPAO-SPECT images for the diagnosis of Alzheimer’s disease: normalizing to cerebellar tracer uptake. NeuroImage 17:1193–1202PubMedCrossRefGoogle Scholar
  23. 23.
    Pickut BA, Dierckx RA, Dobbeleir A, Audenaert K, Van Laere K, Vervaet A, De Deyn PP (1999) Validation of the cerebellum as a reference region for SPECT quantification in patients suffering from dementia of the Alzheimer type. Psychiatry Res: Neuroimaging 90:103–112PubMedCrossRefGoogle Scholar
  24. 24.
    Norbury R, Travis MJ, Erlandsson K, Waddington W, Owens J, Ell PJ, Murphy DG (2004) SPET imaging of central muscarinic receptors with (R,R)[123I]-I-QNB: methodological considerations. Nucl Med Biol 31:583–590PubMedCrossRefGoogle Scholar
  25. 25.
    Talbot PR, Lloyd JJ, Snowden JS, Neary D, Testa HJ (1994) Choice of reference region in the quantification of single-photon emission tomography in primary degenerative dementia. Eur J Nucl Med 21:503–508PubMedCrossRefGoogle Scholar
  26. 26.
    Elser H, Henze M, Spierer FJ, Georgi P (1996) Semiquantitative 99mTc-HMPAO SPECT in dementia of the Alzheimer type: influence of the selection of reconstruction filter and reference region. Nuklearmedizin 35:243–250PubMedGoogle Scholar
  27. 27.
    Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66:137–147PubMedCrossRefGoogle Scholar
  28. 28.
    Nordberg A, Winblad B (1986) Reduced number of [3H]nicotine and [3H]acetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci Lett 72:115–119PubMedCrossRefGoogle Scholar
  29. 29.
    Nordberg A, Lundqvist H, Hartvig P, Lilja A, Langstrom B (1995) Kinetic analysis of regional (S)(-)11C nicotine binding in normal and Alzheimer brains—in vivo assessment using positron emission tomography. Alzheimer Dis Assoc Disord 9:21–27PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Emma Terrière
    • 1
  • Mike Sharman
    • 1
  • Claire Donaghey
    • 1
  • Lucie Herrmann
    • 1
    • 2
  • Jane Lonie
    • 1
  • Marion Strachan
    • 1
  • Nadine Dougall
    • 1
  • Jonathan Best
    • 1
  • Klaus P. Ebmeier
    • 1
    • 2
  • Sally Pimlott
    • 3
  • Jim Patterson
    • 3
  • David Wyper
    • 3
  1. 1.Division of PsychiatryUniversity of EdinburghEdinburghUK
  2. 2.Department of Psychiatry, Warneford HospitalUniversity of OxfordOxfordUK
  3. 3.Department of Medical Physics and West of Scotland Radionuclide PharmacySouthern General HospitalGlasgowUK

Personalised recommendations