Skip to main content
Log in

Self-Stimulation Rewarding Experience Restores Stress-Induced CA3 Dendritic Atrophy, Spatial Memory Deficits and Alterations in the Levels of Neurotransmitters in the Hippocampus

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Chronic restraint stress causes spatial learning and memory deficits, dendritic atrophy of the hippocampal pyramidal neurons and alterations in the levels of neurotransmitters in the hippocampus. In contrast, intracranial self-stimulation (ICSS) rewarding behavioral experience is known to increase dendritic arborization, spine and synaptic density, and increase neurotransmitter levels in the hippocampus. In addition, ICSS facilitates operant and spatial learning, and ameliorates fornix-lesion induced behavioral deficits. Although the effects of stress and ICSS are documented, it is not known whether ICSS following stress would ameliorate the stress-induced deficits. Accordingly, the present study was aimed to evaluate the role of ICSS on stress-induced changes in hippocampal morphology, neurochemistry, and behavioral performance in the T-maze. Experiments were conducted on adult male Wistar rats, which were randomly divided into four groups; normal control, stress (ST), self-stimulation (SS), and stress + self-stimulation (ST + SS). Stress group of rats were subjected to restraint stress for 6 h daily over 21 days, SS group animals were subjected to SS from ventral tegmental area for 10 days and ST + SS rats were subjected to restraint stress for 21 days followed by 10 days of SS. Interestingly, our results show that stress-induced behavioral deficits, dendritic atrophy, and decreased levels of neurotransmitters were completely reversed following 10 days of SS experience. We propose that SS rewarding behavioral experience ameliorates the stress-induced cognitive deficits by inducing structural and biochemical changes in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sunanda, Shankaranarayana Rao BS, Raju TR (2000) Chronic restraint stress impairs acquisition and retention of spatial memory task in rats. Curr Sci 79:1581–1584

    Google Scholar 

  2. Srikumar BN, Raju TR, Shankaranarayana Rao BS (2006) The involvement of cholinergic and noradrenergic systems in behavioral recovery following oxotremorine treatment to chronically stressed rats. Neuroscience 143:679–688

    Article  PubMed  CAS  Google Scholar 

  3. Srikumar BN, Raju TR, Shankaranarayana Rao BS (2007) Contrasting effects of bromocriptine on learning of a partially baited radial arm maze task in the presence and absence of restraint stress. Psychopharmacology (Berl) 193:363–374

    Article  CAS  Google Scholar 

  4. Conrad CD, Galea LA, Kuroda Y et al (1996) Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine pretreatment. Behav Neurosci 110:1321–1334

    Article  PubMed  CAS  Google Scholar 

  5. McLay RN, Freeman SM, Zadina JE (1998) Chronic corticosterone impairs memory performance in the Barnes maze. Physiol Behav 63:933–937

    Article  PubMed  CAS  Google Scholar 

  6. Bodnoff SR, Humphreys AG, Lehman JC et al (1995) Enduring effects of chronic corticosterone treatment on spatial learning, synaptic plasticity, and hippocampal neuropathology in young and mid-aged rats. J Neurosci 15:61–69

    PubMed  CAS  Google Scholar 

  7. Herbert J, Goodyer IM, Grossman AB et al (2006) Do corticosteroids damage the brain? J Neuroendocrinol 18:393–411

    Article  PubMed  CAS  Google Scholar 

  8. de Quervain DJ, Roozendaal B, McGaugh JL (1998) Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature 394:787–790

    Article  PubMed  Google Scholar 

  9. Krugers HJ, Goltstein PM, van der LS et al (2006) Blockade of glucocorticoid receptors rapidly restores hippocampal CA1 synaptic plasticity after exposure to chronic stress. Eur J Neurosci 23:3051–3055

    Article  PubMed  CAS  Google Scholar 

  10. Luine VN, Spencer RL, McEwen BS (1993) Effects of chronic corticosterone ingestion on spatial memory performance and hippocampal serotonergic function. Brain Res 616:65–70

    Article  PubMed  CAS  Google Scholar 

  11. Magarinos AM, McEwen BS (1995) Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 69:89–98

    Article  PubMed  CAS  Google Scholar 

  12. McEwen BS (1999) Stress and hippocampal plasticity. Annu Rev Neurosci 22:105–122

    Article  PubMed  CAS  Google Scholar 

  13. Shankaranarayana Rao BS, Madhavi R, Sunanda et al (2001) Complete reversal of dendritic atrophy in CA3 neurons of the hippocampus by rehabilitation in restraint stressed rats. Curr Sci 80:653–659

    Google Scholar 

  14. Sunanda, Meti BL, Raju TR (1997) Entorhinal cortex lesioning protects hippocampal CA3 neurons from stress-induced damage. Brain Res 770:302–306

    Article  PubMed  CAS  Google Scholar 

  15. Vyas A, Mitra R, Shankaranarayana Rao BS et al (2002) Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 22:6810–6818

    PubMed  CAS  Google Scholar 

  16. Sunanda, Rao MS, Raju TR (1995) Effect of chronic restraint stress on dendritic spines and excrescences of hippocampal CA3 pyramidal neurons—a quantitative study. Brain Res 694:312–317

    Article  PubMed  CAS  Google Scholar 

  17. Pawlak R, Shankaranarayana Rao BS, Melchor JP et al (2005) Tissue plasminogen activator and plasminogen mediate stress-induced decline of neuronal and cognitive functions in the mouse hippocampus. Proc Natl Acad Sci USA 102:18201–18206

    Article  PubMed  CAS  Google Scholar 

  18. Sunanda, Shankaranarayana Rao BS, Raju TR (2000) Restraint stress-induced alterations in the levels of biogenic amines, amino acids, and AChE activity in the hippocampus. Neurochem Res 25:1547–1552

    Article  PubMed  CAS  Google Scholar 

  19. Olds J (1962) Hypothalamic substrates of reward. Physiol Rev 42:554–604

    PubMed  CAS  Google Scholar 

  20. Shankaranarayana Rao BS, Desiraju T, Raju TR (1993) Neuronal plasticity induced by self-stimulation rewarding experience in rats—a study on alteration in dendritic branching in pyramidal neurons of hippocampus and motor cortex. Brain Res 627:216–224

    Article  Google Scholar 

  21. Shankaranarayana Rao BS, Desiraju T, Meti BL et al (1994) Plasticity of hippocampal and motor cortical pyramidal neurons induced by self-stimulation experience. Indian J Physiol Pharmacol 38:23–28

    Google Scholar 

  22. Shankaranarayana Rao BS, Raju TR, Meti BL (1998) Long-lasting structural changes in CA3 hippocampal and layer V motor cortical pyramidal neurons associated with self-stimulation rewarding experience: a quantitative Golgi study. Brain Res Bull 47:95–101

    Article  PubMed  CAS  Google Scholar 

  23. Shankaranarayana Rao BS, Raju TR, Meti BL (1998) Alterations in the density of excrescences in CA3 neurons of hippocampus in rats subjected to self-stimulation experience. Brain Res 804:320–324

    Article  PubMed  CAS  Google Scholar 

  24. Shankaranarayana Rao BS, Raju TR, Meti BL (1999) Increased numerical density of synapses in CA3 region of hippocampus and molecular layer of motor cortex after self-stimulation rewarding experience. Neuroscience 91:799–803

    Article  Google Scholar 

  25. Shankaranarayana Rao BS, Raju TR, Meti BL (1999) Self-stimulation rewarding experience induced alterations in dendritic spine density in CA3 hippocampal and layer V motor cortical pyramidal neurons. Neuroscience 89:1067–1077

    Article  PubMed  CAS  Google Scholar 

  26. Shankaranarayana Rao BS, Raju TR, Meti BL (1998) Self-stimulation of lateral hypothalamus and ventral tegmentum increases the levels of noradrenaline, dopamine, glutamate, and AChE activity, but not 5-hydroxytryptamine and GABA levels in hippocampus and motor cortex. Neurochem Res 23:1053–1059

    Article  PubMed  CAS  Google Scholar 

  27. Yoganarasimha D, Shankaranarayana Rao BS, Raju TR et al (1998) Facilitation of acquisition and performance of operant and spatial learning tasks in self-stimulation experienced rats. Behav Neurosci 112:725–729

    Article  PubMed  CAS  Google Scholar 

  28. Yoganarasimha D, Meti BL (1999) Amelioration of fornix lesion induced learning deficits by self-stimulation rewarding experience. Brain Res 845:246–251

    Article  PubMed  CAS  Google Scholar 

  29. Shankaranarayana Rao BS, Raju TR (2001) Intracranial self-stimulation: an animal model to study drug addiction, depression and neuronal plasticity—a review. Proc Indian Natl Sci Acad (Biol Sci) B67:155–188

    Google Scholar 

  30. Paxinos G, Watson C (1986) The Rat Brain in Stereotaxic Coordinates. Academic Press, Sydney

    Google Scholar 

  31. Ramkumar K, Raju TR, Shankaranarayana Rao BS (2004) Intracranial self-stimulation. In: Raju TR, Kutty BM, Sathyaprabha TN et al (eds) Brain and Behavior. NIMHANS, Bangalore, pp 121–126

    Google Scholar 

  32. Shankaranarayana Rao BS, Raju TR (2004) The Golgi techniques for staining neurons. In: Raju TR, Kutty BM, Sathyaprabha TN et al (eds) Brain and Behavior. NIMHANS, Bangalore, pp 108–111

    Google Scholar 

  33. Gundappa G, Desiraju T (1988) Deviations in brain development of F2 generation on caloric undernutrition and scope of their prevention by rehabilitation: alterations in dendritic spine production and pruning of pyramidal neurons of lower laminae of motor cortex and visual cortex. Brain Res 456:205–223

    Article  PubMed  CAS  Google Scholar 

  34. Fitch JM, Juraska JM, Washington LW (1989) The dendritic morphology of pyramidal neurons in the rat hippocampal CA3 area. I. Cell types. Brain Res 479:105–114

    PubMed  CAS  Google Scholar 

  35. Ellman GL, Courtney KD, Andres V Jr et al (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  36. Srikumar BN, Ramkumar K, Raju TR et al (2004) Assay of acetylcholinesterase activity in the brain. In: Raju TR, Kutty BM, Sathyaprabha TN et al (eds) Brain and behavior. NIMHANS, Bangalore, pp 142–144

    Google Scholar 

  37. Deepti N, Ramkumar K, Srikumar BN et al (2004) Estimation of neurotransmitters in the brain by chromatographic methods. In: Raju TR, Kutty BM, Sathyaprabha TN et al (eds) Brain and Behavior. NIMHANS, Bangalore, pp 134–141

    Google Scholar 

  38. Srikumar BN, Bindu B, Priya V et al (2004) Methods of assessment of learning and memory in rodents. In: Raju TR, Kutty BM, Sathyaprabha TN et al (eds) Brain and Behavior. NIMHANS, Bangalore, pp 145–151

    Google Scholar 

  39. Bures J, Buresova O, Huston JP (1983) Techniques and basic experiments for the study of brain and behaviour. Elsevier Science Publishers B.V., Amsterdam

    Google Scholar 

  40. Deacon RM, Rawlins JN (2006) T-maze alternation in the rodent. Nat Protoc 1:7–12

    Article  PubMed  Google Scholar 

  41. Watanabe Y, Gould E, McEwen BS (1992) Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res 588:341–345

    Article  PubMed  CAS  Google Scholar 

  42. Sapolsky RM, Krey LC, McEwen BS (1985) Prolonged glucocorticoid exposure reduces hippocampal neuron number: implications for aging. J Neurosci 5:1222–1227

    PubMed  CAS  Google Scholar 

  43. Woolley CS, Gould E, McEwen BS (1990) Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res 531:225–231

    Article  PubMed  CAS  Google Scholar 

  44. Uno H, Tarara R, Else JG et al (1989) Hippocampal damage associated with prolonged and fatal stress in primates. J Neurosci 9:1705–1711

    PubMed  CAS  Google Scholar 

  45. Magarinos AM, Verdugo JM, McEwen BS (1997) Chronic stress alters synaptic terminal structure in hippocampus. Proc Natl Acad Sci USA 94:14002–14008

    Article  PubMed  CAS  Google Scholar 

  46. Conrad CD, LeDoux JE, Magarinos AM et al (1999) Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behav Neurosci 113:902–913

    Article  PubMed  CAS  Google Scholar 

  47. Amaral DG, Witter MP (1995) Hippocampal Formation. In: Paxinos G (ed) The Rat Nervous System. Academic Press, New York, NY, pp 443–493

    Google Scholar 

  48. Ibata Y, Desiraju T, Pappas GD (1971) Light and electron microscopic study of the projection of the medial septal nucleus to the hippocampus of the cat. Exp Neurol 33:103–122

    Article  PubMed  CAS  Google Scholar 

  49. Petrillo M, Ritter CA, Powers AS (1994) A role for acetylcholine in spatial memory in turtles. Physiol Behav 56:135–141

    Article  PubMed  CAS  Google Scholar 

  50. Orsetti M, Casamenti F, Pepeu G (1996) Enhanced acetylcholine release in the hippocampus and cortex during acquisition of an operant behavior. Brain Res 724:89–96

    Article  PubMed  CAS  Google Scholar 

  51. Rasmusson D, Szerb JC (1975) Cortical acetylcholine release during operant behaviour in rabbits. Life Sci 16:683–690

    Article  PubMed  CAS  Google Scholar 

  52. Anisman H (1975) Time-dependent variations in aversively motivated behaviors: nonassociative effects of cholinergic and catecholaminergic activity. Psychol Rev 82:359–385

    Article  PubMed  CAS  Google Scholar 

  53. Tizabi Y, Gilad VH, Gilad GM (1989) Effects of chronic stressors or corticosterone treatment on the septohippocampal cholinergic system of the rat. Neurosci Lett 105:177–182

    Article  PubMed  CAS  Google Scholar 

  54. Verney C, Baulac M, Berger B et al (1985) Morphological evidence for a dopaminergic terminal field in the hippocampal formation of young and adult rat. Neuroscience 14:1039–1052

    Article  PubMed  CAS  Google Scholar 

  55. Day J, Fibiger HC (1993) Dopaminergic regulation of cortical acetylcholine release: effects of dopamine receptor agonists. Neuroscience 54:643–648

    Article  PubMed  CAS  Google Scholar 

  56. Mattson MP (1988) Neurotransmitters in the regulation of neuronal cytoarchitecture. Brain Res 472:179–212

    PubMed  CAS  Google Scholar 

  57. Appleyard ME (1995) Acetylcholinesterase induces long-term potentiation in CA1 pyramidal cells by a mechanism dependent on metabotropic glutamate receptors. Neurosci Lett 190:25–28

    Article  PubMed  CAS  Google Scholar 

  58. Lakshmana MK, Shankaranarayana Rao BS, Dhingra NK et al (1998) Chronic (-) deprenyl administration increases dendritic arborization in CA3 neurons of hippocampus and AChE activity in specific regions of the primate brain. Brain Res 796:38–44

    Article  PubMed  CAS  Google Scholar 

  59. Shankaranarayana Rao BS, Lakshmana MK, Meti BL et al (1999) Chronic (-) deprenyl administration alters dendritic morphology of layer III pyramidal neurons in the prefrontal cortex of adult Bonnett monkeys. Brain Res 821:218–223

    Article  PubMed  CAS  Google Scholar 

  60. Matsukawa M, Ogawa M, Nakadate K et al (1997) Serotonin and acetylcholine are crucial to maintain hippocampal synapses and memory acquisition in rats. Neurosci Lett 230:13–16

    Article  PubMed  CAS  Google Scholar 

  61. Mazer C, Muneyyirci J, Taheny K et al (1997) Serotonin depletion during synaptogenesis leads to decreased synaptic density and learning deficits in the adult rat: a possible model of neurodevelopmental disorders with cognitive deficits. Brain Res 760:68–73

    Article  PubMed  CAS  Google Scholar 

  62. Segura-Torres P, Portell-Cortes I, Morgado-Bernal I (1991) Improvement of shuttle-box avoidance with post-training intracranial self-stimulation, in rats: a parametric study. Behav Brain Res 42:161–167

    Article  PubMed  CAS  Google Scholar 

  63. Handelmann GE, Olton DS (1981) Spatial memory following damage to hippocampal CA3 pyramidal cells with kainic acid: impairment and recovery with preoperative training. Brain Res 217:41–58

    Article  PubMed  CAS  Google Scholar 

  64. Pavlides C, Watanabe Y, McEwen BS (1993) Effects of glucocorticoids on hippocampal long-term potentiation. Hippocampus 3:183–192

    Article  PubMed  CAS  Google Scholar 

  65. Gasbarri A, Sulli A, Innocenzi R et al (1996) Spatial memory impairment induced by lesion of the mesohippocampal dopaminergic system in the rat. Neuroscience 74:1037–1044

    PubMed  CAS  Google Scholar 

  66. Hersi AI, Rowe W, Gaudreau P et al (1995) Dopamine D1 receptor ligands modulate cognitive performance and hippocampal acetylcholine release in memory-impaired aged rats. Neuroscience 69:1067–1074

    Article  PubMed  CAS  Google Scholar 

  67. Rosenzweig MR, Bennett EL (1996) Psychobiology of plasticity: effects of training and experience on brain and behavior. Behav Brain Res 78:57–65

    Article  PubMed  CAS  Google Scholar 

  68. George MS, Nahas Z, Borckardt JJ et al (2007) Brain stimulation for the treatment of psychiatric disorders. Curr Opin Psychiatry 20:250–254

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from Department of Science and Technology (DST), Government of India. We thank ADJ Titus for help in collating Golgi images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Shankaranarayana Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramkumar, K., Srikumar, B.N., Shankaranarayana Rao, B.S. et al. Self-Stimulation Rewarding Experience Restores Stress-Induced CA3 Dendritic Atrophy, Spatial Memory Deficits and Alterations in the Levels of Neurotransmitters in the Hippocampus. Neurochem Res 33, 1651–1662 (2008). https://doi.org/10.1007/s11064-007-9511-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9511-x

Keywords

Navigation