Skip to main content

Advertisement

Log in

The Increase in Retinal Cells Proliferation Induced by FGF2 is Mediated by Tyrosine and PI3 Kinases

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Since 1973, multiple effects of basic fibroblast growth factor have been described in a large number of cells. These effects include proliferation, survival and differentiation. The aim of this work was to study the intracellular pathways involved in the basic fibroblast growth factor (FGF2) effect on rat retinal cells proliferation in vitro. Our data show that treatment with FGF2 increases proliferation in a concentration- and time-dependent manner. The effect of 25 ng/ml FGF2 was blocked by 10 μM genistein, a tyrosine kinase inhibitor and by 25 μM LY294002, a PI3 kinase inhibitor. The concomitant treatment with 0.3 μM chelerythrine chloride, a protein kinase C inhibitor, and 6.25 μM LY294002 also inhibited the effect of FGF2. Our results suggest that the proliferative effect of FGF2 on retinal cell cultures involves the activation of distinct kinases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xie M-H, Holocomb I, Deuel B et al (1999) FGF-19, a novel fibroblast growth factor with unique specificity for FGFR4. Cytokine 11(10):729–735

    Article  PubMed  CAS  Google Scholar 

  2. Yamashita T, Yoshioka M, Itoh N (2000) Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun 277:494–498

    Article  PubMed  CAS  Google Scholar 

  3. Boilly B, Vercoutter-Edouart AS, Hondermarck H et al (2000) FGF signals for cell proliferation and migration through different pathways. Cytokines Growth Factor Rev 11:295–302

    Article  CAS  Google Scholar 

  4. Presta M, Dell’Era P, Mitola S et al (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16(2):159–178

    Article  PubMed  CAS  Google Scholar 

  5. Lundin L, Rönnstrand L, Cross MC et al (2003) Differential tyrosine phosphorylation of fibroblast growth factor (FGF) receptor-1 and receptor proximal signal transduction in response to FGF-2 and heparin. Exp Cell Res 287:190–198

    Article  PubMed  CAS  Google Scholar 

  6. Stringer SE, Gallagher JT (1996) Heparan sulphate. Int J Biochem Cell Biol 29(5):709–714

    Article  Google Scholar 

  7. Sleeman M, Fraser J, McDonald M et al (2001) Identification of a new fibroblast growth factor receptor, FGFR5. Gene 271:717–718

    Article  Google Scholar 

  8. Fernig DG, Gallagher JT (1994) Fibroblast growth factors and their receptors: an information network controlling tissue growth, morphogenesis and repair. Prog Growth Factor Res 5:353–377

    Article  PubMed  CAS  Google Scholar 

  9. Nugent MA, Iozzo RV (2000) Fibroblast growth factor-2. Int J Biochem Cell Biol 33:115–120

    Article  Google Scholar 

  10. Ornitz DM, Yayon A, Flanagan JG et al (1992) Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells. Mol Cell Biol 12:240–247

    PubMed  CAS  Google Scholar 

  11. Rapraeger AC, Krufka A, Olwin BB (1991) Requirement of heparan sulfate for bFGF-mediated fibroblast growth factor and myoblast differentiation. Science 252:1705–1709

    Article  PubMed  CAS  Google Scholar 

  12. Yayon A, Klagsbrun M, Esko JD et al (1991) Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factors to its high affinity receptor. Cell 64:841–848

    Article  PubMed  CAS  Google Scholar 

  13. Lundin L, Larsson H, Kreuger J et al (2000) Selectively desulfated heparin inhibits fibroblast growth factor-induced mitogenicity and angiogenesis. J Biol Chem 275:24653–24660

    Article  PubMed  CAS  Google Scholar 

  14. Bikfalvi A, Klein S, Pintucci G et al (1997) Biological roles of fibroblast growth factor-2. Endocr Rev 18:26–45

    Article  PubMed  CAS  Google Scholar 

  15. Ezzeddine ZD, Yang X, De Chiara T et al (1997) Postmitotic cell fate to become rod photoreceptors can be respecified by CNTF treatment of the retina. Development 124:1055–1067

    PubMed  CAS  Google Scholar 

  16. Pittack C, Grunwald GB, Reh TA (1997) Fibroblast growth factors are necessary for neural retina but not pigmented epithelium differentiation in chick embryos. Development 124:805–816

    PubMed  CAS  Google Scholar 

  17. Millette E, Rauch BH, Kenagy RD et al (2006) Plated-derived growth factor-BB transactivates the fibroblast growth factor receptor to induce proliferation in human smooth muscle cells. TICM 16:25–28

    CAS  Google Scholar 

  18. Cepko CL, Austin CP, Yang X et al (1996) Cell fate determination in the vertebrate retina. Proc Natl Acad Sci USA 93:589–595

    Article  PubMed  CAS  Google Scholar 

  19. Park CM, Hollenberg MJ (1993) Growth factor-induced retinal regeneration in vivo. Int Rev Cytol 146:49–74

    Article  PubMed  CAS  Google Scholar 

  20. Hicks D (1998) Putative functions of fibroblast growth factors in retinal development, maturation and survival. Semin Cell Dev Biol 9:263–269

    Article  PubMed  CAS  Google Scholar 

  21. Tropepe V, Coles BLK, Chasson BJ et al (2000) Retinal stem cells in the adult mammalian eye. Science 287:2032–2036

    Article  PubMed  CAS  Google Scholar 

  22. Noji S, Matsuo T, Koyama E et al (1990) Expression pattern of acidic and basic fibroblast growth factor genes in adult rat eyes. Biochem Biophys Res Commun 168:343–349

    Article  PubMed  CAS  Google Scholar 

  23. Stachowiak KM, Moffett J, Maher P et al (1997) Growth factor regulation of cell growth and proliferation in the nervous system. A new intracrine nuclear mechanism. Mol Neurobiol 15:257–283

    Article  PubMed  CAS  Google Scholar 

  24. Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267(16):10931–10934

    PubMed  CAS  Google Scholar 

  25. Blanquet PR, Jonet L (1996) Signal-regulated proteins and fibroblast growth factor receptors: comparative immunolocalization in rat retina. Neurosci Lett 214:135–138

    Article  PubMed  CAS  Google Scholar 

  26. Inatani M, Honjo M, Oohira A et al (2002) Spatiotemporal expression patterns of N-syndecan, a transmembrane heparan sulfate proteoglycan, in developing retina. Invest Ophthalmol Vis Sci 43:1616–1621

    PubMed  Google Scholar 

  27. Inatani M, Tanihara H (2002) Proteoglycans in retina. Prog Ret Eye Res 21:429–447

    Article  CAS  Google Scholar 

  28. Ozaki S, Radeke MJ, Anderson DH (2000) Rapid upregulation of fibroblast growth factor receptor 1 (flg) by rat photoreceptor cells after injury. Invest Ophtalmol Vis Sci 41(2):568–579

    CAS  Google Scholar 

  29. Kinkl N, Hageman GS, Sahel JA et al (2002) Fibroblast growth factor receptor (FGFR) and candidate signaling molecule distribution within rat and human retina. Mol Vis 8:149–160

    PubMed  Google Scholar 

  30. Valter K, Van Driel D, Bisti S et al (2002) FGFR1 expression and FGFR1-FGF-2 colocalisation in rat retina: sites of FGF-2 action on rat photoreceptors. Growth Factors 20(4):177–188

    Article  PubMed  CAS  Google Scholar 

  31. Sapieha PS, Peltier M, Rendahl KG et al (2003) Fibroblast growth factor-2 gene delivery stimulates axon growth by adult retinal ganglion cells after acute optic nerve injury. Mol Cell Neurosci 24:656–672

    Article  PubMed  CAS  Google Scholar 

  32. Eswarakumar VP, Lax I, Schlessinger J (2005) Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16(2):139–149

    Article  PubMed  CAS  Google Scholar 

  33. Zhu X, Raina AR, Smith MA (1999) Cell cycle events in neurons. Proliferation or death? Am J Pathol 155:327–329

    PubMed  CAS  Google Scholar 

  34. Jones S, Kazlauskas A (2001) Growth factor-dependent signaling and cell cycle progression. FEBS Lett 490:110–116

    Article  PubMed  CAS  Google Scholar 

  35. Ho A, Dowdy SF (2002) Regulation of G(1) cell-cycle progression by oncogenes and tumor suppressor genes. Curr Opin Genet Dev 12:47–52

    Article  PubMed  CAS  Google Scholar 

  36. Pai R, Szabo IL, Kawanaka H et al (2000) Indomethacin inhibits endothelial cell proliferation by suppressing cell cycle proteins and PRB phosphorylation: a key to its antiangiogenic action? Mol Cell Biol Res Commun 4:111–116

    Article  PubMed  CAS  Google Scholar 

  37. Torres PMM, Guilarducci CVV, Sholl-Franco A et al (2002) Sciatic conditioned medium increases survival, proliferation and differentiation of retinal cells in culture. Int J Dev Neurosci 20:11–20

    Article  PubMed  CAS  Google Scholar 

  38. Arroyo JG, Ghazvini S, Char DH (1997) An immunocytochemical study of isolated human retinal Müller cells in culture. Graefe´s Arch Clin Exp Ophthalmol 235:411–414

    Article  CAS  Google Scholar 

  39. Kubota A, Nishida K, Nakashima K et al (2006) Conversion of mammalian Müller glial cells into a neuronal lineage by in vitro aggregate-culture. Biochem Biophys Res Commun 351:514–520

    Article  PubMed  CAS  Google Scholar 

  40. Baron W, Metz B, Bansal R et al (2000) PDGF and FGF-2 signaling in oligodendrocyte progenitor cells: regulation of proliferation and differentiation by multiple intracellular signaling pathways. Mol Cell Neurosci 15:314–329

    Article  PubMed  CAS  Google Scholar 

  41. Engele J, Bohn MC (1991) The neurotrophic effects of fibroblast growth factors on dopaminergic neurons in vitro are mediated by mesencephalic glia. J Neurosci 11:3070–3078

    PubMed  CAS  Google Scholar 

  42. Ma W, Li B-S, Maric D et al (2003) Ethanol blocks both basic fibroblast growth factor- and carbachol-mediated neuroepithelial cell expansion with differential effects on carbachol-activated signaling pathways. Neuroscience 11:37–47

    Article  CAS  Google Scholar 

  43. Abe K, Saito H (2000) Neurotrophic effect of basic fibroblast growth factor is mediated by the p42/p44 mitogen-activated protein kinase cascade in cultured rat cortical neurons. Dev Brain Res 122:81–85

    Article  CAS  Google Scholar 

  44. Archer FR, Doherty P, Collins D et al (1999) CAMs and FGF cause a local submembrane calcium signal promoting axon outgrowth without a rise in bulk calcium concentration. Eur J Neurosci 11:3565–3573

    Article  PubMed  CAS  Google Scholar 

  45. Gao H, Hollyfield JG (1995) Basic fibroblast growth factor in retinal development: differential levels of bFGF expression and content in normal and retinal degeneration (rd) mutant mice. Dev Biol 169:168–184

    Article  PubMed  CAS  Google Scholar 

  46. Hollborn M, Jahn K, Limb GA et al (2004) Characterization of the basic fibroblast growth factor-evoked proliferation of the human Müller cell line, MIO-M1. Graefes Arch Clin Exp Ophthalmol 242:414–422

    Article  PubMed  CAS  Google Scholar 

  47. Kengaku M, Okamoto H (1993) Basic fibroblast growth factor induces differentiation of neural tube and neural crest lineages of cultured ectoderm cells from Xenopus gastrula. Development 119:1067–1078

    PubMed  CAS  Google Scholar 

  48. Tuttle JB, Mackey T, Steers WD (1994) NGF, bFGF and CNTF increase survival of major pelvic ganglion neurons cultured from the adult rat. Neurosci Lett 173:94–98

    Article  PubMed  CAS  Google Scholar 

  49. Hicks D, Courtois Y (1992) Fibroblast growth factor stimulates photoreceptor differentiation in vitro. J Neurosci 12(6):2022–2033

    PubMed  CAS  Google Scholar 

  50. Pelham H (1991) Multiple targets for brefeldin A. Cell 67:449–451

    Article  PubMed  CAS  Google Scholar 

  51. Schlessinger J (2004) Common and distinct elements in cellular signaling via EGF and FGF receptors. Science 306:1506–1507

    Article  PubMed  CAS  Google Scholar 

  52. Amalric F, Bouche G, Bonnet H et al (1994) Fibroblast growth factor-2 (FGF-2) in the nucleus: translocation process and targets. Biochem Pharmacol 47:111–115

    Article  PubMed  CAS  Google Scholar 

  53. Hopkins CR (1994) Internalization of polypeptide growth factor receptors and the regulation of transcription. Biochem Pharmacol 47(1):151–154

    Article  PubMed  CAS  Google Scholar 

  54. Désiré L, Courtois Y, Jeanny J-C (1998) Supression of fibroblast growth factors 1 and 2 by antisense oligonucleotides in embryonic chick retinal cells in vitro inhibits neuronal differentiation and survival. Exp Cell Res 241:210–221

    Article  PubMed  Google Scholar 

  55. Maher P (1999) p38 mitogen-activated protein kinase activation is required for fibroblast growth factor-2-stimulated cell proliferation but not differentiation. J Biol Chem 274:17491–17498

    Article  PubMed  CAS  Google Scholar 

  56. Wahlin KJ, Campochiaro PA, Zack DJ et al (2000) Neurotrophic factors cause activation of intracellular signaling pathways in Müller cells and other cells of the inner retina, but not photoreceptors. Invest Ophthalmol Vis Sci 41:927–936

    PubMed  CAS  Google Scholar 

  57. Delehedde M, Seve M, Sergeant N et al (2000) Fibroblast growth factor-2 stimulation of p42/44MAPK phosphorylation and ikappa B degradation is regulated by heparan sulfate/heparin in rat mammary fibroblasts. J Biol Chem 275:33905–33910

    Article  PubMed  CAS  Google Scholar 

  58. Young RW (1985a) Cell differentiation in the retina of the mouse. Anat Rec 212:199–205

    Article  PubMed  CAS  Google Scholar 

  59. Young RW (1985b) Cell proliferation during postnatal development of the retina in the mouse. Dev Brain Res 21:229–239

    Article  Google Scholar 

  60. Burgess WH, Maciag T (1989) The heparin-binding (fibroblast) growth factor family of proteins. Ann Rev Biochem 58:575–606

    Article  PubMed  CAS  Google Scholar 

  61. Gospodarowicz D, Neufeld G, Schweigerer L (1987) Fibroblast growth factor: structural and biological properties. J Cell Physiol Suppl 5:15–26

    Article  PubMed  Google Scholar 

  62. Rifkin DB, Moscatelli D (1989) Recent developments in the cell biology of basic fibroblast growth factors. J Cell Biol 109:1–6

    Article  PubMed  CAS  Google Scholar 

  63. Cao W, Wen R, Li F et al (1997) Mechanical injury increases bFGF and CNTF mRNA expression in the mouse retina. Exp Eye Res 65:241–248

    Article  PubMed  CAS  Google Scholar 

  64. Cepko CL (1983) Retinal cell fate determination. In: Osborne NN, Chader GJ (eds) Progress in retinal research. Pergamon Press, NY, pp 1–12

    Google Scholar 

  65. Reese BE, Colello RJ (1992) Neurogenesis in the retinal ganglion cell layer of the rat. Neuroscience 45:419–429

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Alexandre José Fernandes, Bernardino Matheus dos Santos, and Alecsandro de Jesus Rezende for technical assistance. We also thank Arnaldo Paes de Andrade for his helpful discussions. Carla Valéria Vieira Guilarducci-Ferraz and Gustavo Mataruna da Silva are the recipients of a CAPES fellowship. This work was supported by grants from CAPES, CNPq, PRONEX-MCT, and FAPERJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Giestal de Araújo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guilarducci-Ferraz, C.V.V., da Silva, G.M., Torres, P.M.M. et al. The Increase in Retinal Cells Proliferation Induced by FGF2 is Mediated by Tyrosine and PI3 Kinases. Neurochem Res 33, 754–764 (2008). https://doi.org/10.1007/s11064-007-9491-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9491-x

Keywords

Navigation