Neurochemical Research

, Volume 33, Issue 3, pp 589–597 | Cite as

Mitochondrial Dysfunction and Oxidative Stress in Parkinson’s Disease

  • Isaac G. Onyango
Original Paper


Environmental toxins, genetic predisposition and old age are major risk factors for Parkinson’s disease (PD). Although the mechanism(s) underlying selective dopaminergic (DA) neurodegeneration remain unclear, molecular studies in both toxin based models and genetic based models of the disease suggest a major etiologic role for mitochondrial dysfunction in the pathogenesis of PD. Further, recent studies have presented clear evidence for a high burden of mtDNA deletions within the substantia nigra neurons in individuals with PD. Ultimately, an understanding of the molecular events which precipitate DA neurodegeneration in idiopathic PD will enable the development of targeted and effective therapeutic strategies. We review recent advances and current understanding of the genetic factors, molecular mechanisms and animal models of PD.


Parkinson’s disease Mitochondrial dysfunction Oxidative stress mtDNA Environmental toxins Neurodegeneration Lewy bodies Proteasome Rotenone MPTP Cybrids 


  1. 1.
    Abou-Sleiman P, Muqit M, Wood N (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 7:207–219PubMedGoogle Scholar
  2. 2.
    Alam Z, Daniel S, Lees A, Marsden D, Jenner P, Halliwell B (1997) A generalised increase in protein carbonyls in the brain in Parkinson’s but not incidental Lewy body disease. J Neurochem 69:1326–1329PubMedCrossRefGoogle Scholar
  3. 3.
    Allan S, Rothwell N (2001) Cytokines and acute neurodegeneration. Nat Rev Neurosci 2:734–744PubMedGoogle Scholar
  4. 4.
    Arimoto T, Bing G (2003) Up-regulation of inducible nitric oxide synthase in the substantia nigra by lipopolysaccharide causes microglial activation and neurodegeneration. Neurobiol Dis 12:35–45PubMedGoogle Scholar
  5. 5.
    Arimoto T, Choi D, Lu X, Liu M, Nguyen X, Zheng N, Stewart C, Kim H, Bing G (2006) Interleukin-10 protects against inflammation-mediated degeneration of dopaminergic neurons in substantia nigra. Neurobiol Aging 28:894–906Google Scholar
  6. 6.
    Banati R, Gehrmann J, Schubert P, Kreutzberg GW (1993) Cytotoxicity of microglia. Glia 7:111–118PubMedGoogle Scholar
  7. 7.
    Beal M (2003) Bioenergetic approaches for neuroprotection in Parkinson’s disease. Ann Neurol 53:S39–S47PubMedGoogle Scholar
  8. 8.
    Beal M (2005) Mitochondria take center stage in aging and neurodegeneration. Ann Neurol 58:495–505PubMedGoogle Scholar
  9. 9.
    Bender A, Krishnan K, Morris C, Taylor G, Reeve A, Perry R, Jaros E, Hersheson J, Betts J, Klopstock T, Taylor R, Turnbull D (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38:515–517PubMedGoogle Scholar
  10. 10.
    Berger J, Glitza I (2003) Von’s Economo’s Encephalitis. In: Nath A Jr. (ed) Clinical neurovirology. Marcel Dekker, New York, p 523–542Google Scholar
  11. 11.
    Betarbet R, Sherer T, MacKenzie G, Garcia-Osuna M, Panov A, Greenamyre J (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nature Neurosci 3:1301–1306PubMedGoogle Scholar
  12. 12.
    Biglan K, Ravina B (2007) Neuroprotection in Parkinson’s disease: an elusive goal. Semin Neurol 27:106–112PubMedGoogle Scholar
  13. 13.
    Blum D, Wu Y, Nissou M, Arnaud S, Benabid AL, Verna JM (1997) P53 and bax activation in 6-hydroxydopamine-induced apoptosis in PC12 cells. Brain Res 751:139–142PubMedGoogle Scholar
  14. 14.
    Bossy Wetzel E, Schwarzenbacher R, Lipton S (2004) Molecular pathways to neurodegeneration. Nat Med 10:S2–S9PubMedGoogle Scholar
  15. 15.
    Casali C, Bonifati V, Santorelli F, Casari G, Fortini D, Patrignani A, Fabbrini G, Carrozzo R, D’Amati G, Locuratolo N, Vanacore N, Damiano M, Pierallini A, Pierelli F, Amabile G, Meco G (2001) Mitochondrial myopathy, parkinsonism, and multiple mtDNA deletions in a Sephardic Jewish family. Neurology 56:802–805PubMedGoogle Scholar
  16. 16.
    Casals J, Elizan T, Yahr M (1998) Postencephalitic parkinsonism—a review. J Neural Transm 105:645–676PubMedGoogle Scholar
  17. 17.
    Casetta I, Govoni V, Granieri E (2005) Oxidative stress, antioxidants and neurodegenerative diseases. Curr Pharm Des 11:2033–2052PubMedGoogle Scholar
  18. 18.
    Cassarino DS, Halvorsen EM, Swerdlow RH, Abramova NN, Parker WD Jr, Sturgill TW, Bennett JP Jr (2000) Interaction among mitochondria, mitogen-activated protein kinases, and nuclear factor-kappaB in cellular models of Parkinson's disease. J Neurochem 74(4):1384–1392PubMedGoogle Scholar
  19. 19.
    Castano A, Herrera A, Cano J, Machado A (1998) Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem 70:1584–1592PubMedCrossRefGoogle Scholar
  20. 20.
    Chalmers R, Brockington M, Howard R, Lecky B, Morgan-Hughes J, Harding A (1996) Mitochondrial encephalopathy with multiple mitochondrial DNA deletions: a report of two families and two sporadic cases with unusual clinical and neuropathological features. J Neurol Sci 143:41–45PubMedGoogle Scholar
  21. 21.
    Chen H, Zhang S, Hernan M, Schwartzschild M, Willett W, Colditz G, Speizer F, Ascherio A (2003) Nonsteriodal anti-inflammatory drugs and the risk of Parkinson's disease. Arch Neurol 60:1059–1064PubMedGoogle Scholar
  22. 22.
    Chen L, Thiruchelvam M, Madura K, Richfield E (2006) Proteasome dysfunction in aged human alpha-synuclein transgenic mice. Neurobiol Dis 23:120–126PubMedGoogle Scholar
  23. 23.
    Chiueh C, Haung S, Murphy D (1992) Enhanced hydroxyl radical generation by 2′-methyl analog of MPTP: suppression by clorgyline and deprenyl. Synapse 11:346–348PubMedGoogle Scholar
  24. 24.
    Chu C, Levinthal D, Kulich S, Chalovich E, DeFranco D (2004) Oxidative neuronal injury: the dark side of ERK1/2. Eur J Biochem 271:2060–2066PubMedGoogle Scholar
  25. 25.
    Chu C, Zhu J-H (2003) Subcellular compartmentalization of P-ERKs in the Lewy body disease substantia nigra. Ann NY Acad Sci 991:288–290CrossRefGoogle Scholar
  26. 26.
    Ciccetti F, Brownell A, Williams K, Chen Y, Livni E, Isacson O (2002) Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Eur J Neurosci 15:991–998Google Scholar
  27. 27.
    Clark I, Dodson M, Jiang C, Cao J, Huh J, Seol J, Yoo S, Hay Ba, Guo M (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441:1162–1166PubMedGoogle Scholar
  28. 28.
    Coelln R, Kugler S, Bahr M, Weller M, Dichgans J, Schulz J (2001) Rescue from death but not from functional impairment: caspase inhibition protects dopaminergic cells against 6-hydroxydopamine induced apoptosis but not against the loss of their terminals. J Neurochem 77:263–273CrossRefGoogle Scholar
  29. 29.
    Cooper J, Daniel S, Marsden C, Schapira A (1995) L-dihydroxyphenylalanine and complex I deficiency in Parkinson’s disease brain. Mov Disord 10:295–297PubMedGoogle Scholar
  30. 30.
    Crouser E, Julian M, Blaho D, Pfeiffer D (2002) Endotoxin-induced mitochondrial damage correlates with impaired respiratory activity. Crit Care Med 30:276–284PubMedGoogle Scholar
  31. 31.
    Czlonkowska A, Kohuknika M, Kurkowska-Jatrzebska I, Czlonkowski A (1996) Microglial reaction in MPTP (1-methyl-4phenyl-1,2,3,6-tetrahydropyridine) induced Parkinson's disease mice model. Neurodegeneration 5:137–143PubMedGoogle Scholar
  32. 32.
    Darios F, Corti O, Lucking C, Hampe C, Muriel M, Abbas N, Gu W, Hirsch E, Rooney T, Ruberg M, Brice A (2003) Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Hum Mol Genet 12:517–526PubMedGoogle Scholar
  33. 33.
    Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909PubMedGoogle Scholar
  34. 34.
    De Coo I, Renier W, Ruitenbeek W, Ter Laak H, Bakker M, Schagger H, Van Oost B, Smeets H (1999) A 4-base pair deletion in the mitochondrial cytochrome b gene associated with Parkinsonism/MELAS overlap syndrome. Ann Neurol 45:130–133PubMedGoogle Scholar
  35. 35.
    de Lau L, Breteler M (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535PubMedGoogle Scholar
  36. 36.
    Dexter D, Wells F, Agid F, Agid Y, Lees AJ, Jenner P, Marsden CD (1987) Increased nigral iron content in postmortem parkinsonian brain. Lancet 8569:1219–1220Google Scholar
  37. 37.
    Ekstrand M, Terzioglu M, Galter D, Zhu S, Hofstetter C, Lindqvist E, Thams S, Bergstrand A, Hansson F, Trifunovic A, Hoffer B, Cullheim S, Mohammed A, Olson L, Larsson N (2007) Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc Natl Acad Sci USA 104:1325–1330PubMedGoogle Scholar
  38. 38.
    Elkon H, Melamed E, Offen D (2004) Oxidative stress, induced by 6-hydroxydopamine, reduces proteasome activities in PC12 cells: implications for the pathogenesis of Parkinson’s disease. J Mol Neurosci 24:387–400PubMedGoogle Scholar
  39. 39.
    Fall CP, Bennett JP Jr (1999) Visualization of cyclosporin A and Ca2+-sensitive cyclical mitochondrial depolarizations in cell culture. Biochim Biophys Acta 1410(1):77–84PubMedGoogle Scholar
  40. 40.
    Feng Z, Wang T, Li D, Fung P, Wilson B, Liu B, Ali S, Langenbach R, Hong J (2002) Cyclooxygenase-2-deficient mice are resistant to 1-methyl-4-phenyl-1,2,3,6-tetradydropyridine-induced damage of dopaminergic neurons in the substantia nigra. Neurosci Lett 329:354–358PubMedGoogle Scholar
  41. 41.
    Fisher J, Mizrahi T, Schori H, Yoles E, Levkovitch-Verbin H, Haggaig S, Revel M, Schwartz M (2001) Increased post-traumatic survival of neurons in IL-6-knockout mice on a background of EAE susceptibility. J Neuroimmunol 119:1–9PubMedGoogle Scholar
  42. 42.
    Friedlander R (2003) Apoptosis and caspases in neurodegenerative diseases. N Engl J Med 348:1365–1375PubMedGoogle Scholar
  43. 43.
    Gao H, Hong J, Zhang W, Liu B (2002) Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 22:782–790PubMedGoogle Scholar
  44. 44.
    Gao H, Liu B, Zhang W, Hong J (2003) Synergistic dopaminergic neurotoxicity of MPTP and inflammogen lipopolysaccharide: relevance to the etioloy of Parkinson's disease. FASEB J 17:1957–1971PubMedGoogle Scholar
  45. 45.
    Gayle D, Ling Z, Tong C, Landers T, Lipton J, Carvey P (2002) Lipopolysacchride (LPS)-induced dopamine cell loss in culture: roles of tumor necrosis factor-alpha, interleukin-1beta, and nitric oxide. Brain Res Dev 133:27–35Google Scholar
  46. 46.
    Ghee M, Fournier A, Mallet J (2000) Rat alpha-synuclein interacts with Tat binding protein 1, a component of the 26S proteasomal complex. J Neurochem 75:2221–2224PubMedGoogle Scholar
  47. 47.
    Gomez-Santos C, Ferrer I, Reiriz J, Vinals F, Barrachina M, Ambrosio S (2002) MPP+ increases α-synuclein expression and ERK/MAP-kinase phosphorylation in human neuroblastoma SH-SY5Y cells. Brain Res 935:32–39PubMedGoogle Scholar
  48. 48.
    Gu M, Cooper J, Taanman J, Schapira A (1998) Mitochondrial DNA transmission of the mitochondrial defect in Parkinson’s disease. Ann Neurol 44:177–186PubMedGoogle Scholar
  49. 49.
    Gu Z, Nakamura T, Yao D, Shi Z, Lipton S (2005) S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Cell Death Differ 12:1202–1204PubMedGoogle Scholar
  50. 50.
    Hald A, Lotharius J (2005) Oxidative stress and inflammation in Parkinson’s disease: is there a casual link? Exp Neurol 193:279–190PubMedGoogle Scholar
  51. 51.
    Halliwell B, Gutteridge J (1999) Oxidative stress in PD. In: Halliwell B, Gutteridge J (eds) Free radicals in biology and medicine. Oxford University Press, New York pp 744–758Google Scholar
  52. 52.
    Hartley A, Stone J, Heron C, Cooper J, Schapira A (1994) Complex I inhibitors induce dose-dependent apoptosis in PC12 cells: relevance to Parkinson’s disease. J Neurochem 63:1987–1990PubMedCrossRefGoogle Scholar
  53. 53.
    Hartmann A, Hunot S, Michel PP, Muriel MP, Vyas S, Faucheux BA, Mouatt-Prigent A, Turmel H, Srinivasan A, Ruberg M, Evan GI, Agid Y, Hirsch EC (2000) Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci USA 97(6):2875–2880PubMedGoogle Scholar
  54. 54.
    Hattori N, Tanaka M, Ozawa T, Mizuno Y (1991) Immunohistochemical studies on complexes I, II, III, IV of mitochondria in Parkinson’s disease. Ann Neurol 30:563–571PubMedGoogle Scholar
  55. 55.
    He Y, Appel S, Le W (2001) Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. Brain Res 909:187–193Google Scholar
  56. 56.
    Hemmer K, Fransen I, Vanderstichele H, VanmeChelen E, Heuschling P (2001) An in vitro model for the study of microglial-induced neurodegeneration: involvement of nitric oxide and tumour necrosis factor-alpha. Neurochem Int 38:557–565PubMedGoogle Scholar
  57. 57.
    Hererra A, Castano A, Venero J, Cano J, Machado A (2000) The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neuorobiol Dis 7:429–447Google Scholar
  58. 58.
    Hirsh E, Hunot S, Damier P, Faucheux B (1998) Glial cells and inflammation in Parkinson's disease: a role in neurodegeneration? . Ann Neurol 44:S115–S120Google Scholar
  59. 59.
    Hunter R, Dragicevic N, Seifert K, Choi D, Liu M, Kim H, Cass W, Sullivan P, Bing G (2007) Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. J Neurochem 100:1375–1386PubMedGoogle Scholar
  60. 60.
    Iravani M, Kashell K, Rose S, Jenner P (2002) Involvement of inducible nitric oxide synthase in inflammation-induced dopaminergic neurodegeneration. Neuroscience 110:49–58PubMedGoogle Scholar
  61. 61.
    Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53(Suppl 3):S26–S36PubMedGoogle Scholar
  62. 62.
    Junn E, Mouradian M (2001) Apoptotic signaling in dopamine-induced cell death: the role of oxidative stress, p38 mitogen activated protein kinase, cytochrome c and caspases. J Neurochem 78:374–383PubMedGoogle Scholar
  63. 63.
    Keeny P, Xie J, Capaldi R, Bennett J Jr (2006) Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits, is functionally impaired and misassembled. J Neurosci Res 26:5256–5264Google Scholar
  64. 64.
    Kim R, Peters M, Jang Y, Shi W, Pintilie M, Fletcher G, DeLuca C, Liepa J, Zhou L, Snow B, Binari R, Manoukian A, Bray M, Liu F, Tsao M, Mak T (2005) DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell 7:263–273PubMedGoogle Scholar
  65. 65.
    Kim S, Kong P, Kim B, Sheen D, Nam S, Chun W (2004) Inhibitory action of minocycline on lipopolysaccharide-induced release of nitric oxide and prostaglandin E2 in BV2 microglial cells. Arch Pharm Res 27:314–318PubMedCrossRefGoogle Scholar
  66. 66.
    Kitamura Y, Kosaka T, Kakimura J, Matsouka Y, Nomura Y, Tan-guchi T (1998) Protective effects of the antiparkinsonian drugs talipexole and pramipexole against 1-methyl 4-phenylpyridinium-induced apoptotic death in human neuroblastoma SH-SY5Y cells. Mol Pharmacol 54:1046–1054PubMedGoogle Scholar
  67. 67.
    Kraytsberg Y, Kudryavtseva E, McKee A, Geula C, Kowall N, Khrapko K (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38:507–508Google Scholar
  68. 68.
    Kulich S, Chu C (2003) Role of reactive oxygen species in ERK phosphorylation and 6-hydroxydopamine cytotoxicity. J Biosci 28:83–89PubMedGoogle Scholar
  69. 69.
    Kulich S, Chu C (2001) Sustained extracellular signal-regulated kinase activation by 6-hydroxydopamine: implications for Parkinson’s disease. J Neurochem 77:1058–1066PubMedGoogle Scholar
  70. 70.
    Kulisz A, Chen N, Chandel N, Shao Z, Schumacker P (2002) Mitochondrial ROS initiate phosphorylation of p38 MAP kinase during hypoxia in cardiomyocytes. Am J Physiol Lung Cell Mol Physiol 282:L1324–L1329PubMedGoogle Scholar
  71. 71.
    Kuroda Y, Mitsui T, Kunishige M, Matsumoto T (2006) Parkin enhances mitochondrial biogenesis in proliferating cells. Hum Mol Genet 15:883–895PubMedGoogle Scholar
  72. 72.
    Langston J, Ballard P, Tetrud J, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980PubMedGoogle Scholar
  73. 73.
    Le W, Rowe D, Xie W, Ortiz I, He Y, Appel S (2001) Microglial activation and dopaminergic cell injury: an in vitro model relevant to Parkinson’s disease. J Neurosci Res 21:8447–8455Google Scholar
  74. 74.
    Liberatore G, Jackson-Lewis V, Vukosavic S, Mandir A, Vila M, McAuliffe W, Dawson V, Dawson T, Przedborski S (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson’s. Nat Med 5:1403–1409PubMedGoogle Scholar
  75. 75.
    Lin M, Beal M (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795PubMedGoogle Scholar
  76. 76.
    Lindersson E, Beedholms R, Hojrup P, Moos T, Gai W, Gendil K, Jensen P (2004) Proteasomal inhibition by α-synuclein filaments and oligomers. J Biol Chem 279:12924–12934PubMedGoogle Scholar
  77. 77.
    Liu B, Gao H, Wang J, Jeohn GH, Cooper CL, Hong JS (2002) Role of nitric oxide in inflammation-mediated neurodegeneration. Ann NY Acad Sci 991:80–92Google Scholar
  78. 78.
    Liu B, Jiang J, Wilson B, Du L, Yang S, Wang JY, Wu G, Cao X, Hong J (2000) Systemic infusion of naloxone reduces degeneration of rat substantia nigral dopaminergic neurons induced by intranigral injection of lipopolysaccharide. J Pharmacol Exp Ther 295:125–132PubMedGoogle Scholar
  79. 79.
    Liu Y, Qin L, Li G, Zhang W, An L, Liu B (2003) Dextromethorplan protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation. J Pharmacol Exp Ther 305:212–218PubMedGoogle Scholar
  80. 80.
    Lu X, Bing G, Hagg T (2000) Naloxone prevents microglia-induced degeneration of dopaminergic substantia nigra neurons in adult rats. Neuroscience 97:285–291PubMedGoogle Scholar
  81. 81.
    Ma J, Ma J (2002) The dual effect of the particulate and organic components of diesel exhaust particles on the alteration of pulmonary immune/inflammatory responses and metabolic enzymes. J Environ Carcinog Ecotoxicol Rev 20:117–147Google Scholar
  82. 82.
    Maguire-Zeiss K, Federoff H (2003) Convergent pathobiologic model of Parkinson’s disease. Ann NY Acad Sci 991:152–166PubMedCrossRefGoogle Scholar
  83. 83.
    McGeer P, Yasojima K, McGeer E (2001) Inflammation in Parkinson’s disease. Adv Neurol 86:83–89PubMedGoogle Scholar
  84. 84.
    Menzies F, Yenisetti S, Min K-T (2005) Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stress. Curr Biol 15:1578–1582PubMedGoogle Scholar
  85. 85.
    Meulener M, Whitworth AJ, Armstrong-Gold C, Rizzu P, Heutink P, Wes P, Pallanck L, Bonini N (2005) Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson’s disease. Curr Biol 15:1572–1577PubMedGoogle Scholar
  86. 86.
    Minghetti L, Levi G (1998) Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog Neurobiol 54:99–125PubMedGoogle Scholar
  87. 87.
    Moore D, West A, Dawson V, Dawson T (2005) Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 28:57–87PubMedGoogle Scholar
  88. 88.
    Nagatsu T, Mogi M, Ichinose H, Togari A (2000) Changes in cytokines and neurotrophins in Parkinson’s disease. J Neural Transm Suppl 60:277–290PubMedGoogle Scholar
  89. 89.
    Nemoto S, Takeda K, Yu Z, Ferrans V, Finkel T (2000) Role for mitochondrial oxidants as regulators of cellular metabolism. Mol Cell Biol 20:7311–7318PubMedGoogle Scholar
  90. 90.
    Niehaus I (2004) Lipopolysaccharides induce inflammation-mediated neurodegeneration in the substantia nigra and cerebral cortex (a case report). In: Hanin I, Cacabelos R (eds) New trends in Alzheimer and Parkinson related disorders. Monduzzi Editore, Bologna, pp 36–39Google Scholar
  91. 91.
    Olanow C, McNaught K (2006) Ubiquitin-proteasome system and Parkinson’s disease. Mov Disord 21:1806–1823PubMedGoogle Scholar
  92. 92.
    Onyango IG, Tuttle JB, Bennett JP Jr (2005) Brain derived growth factor and Glial cell line-derived growth factor have different survival promoting effects and use distinct intracellular signaling pathways to protect PD cybrids from H2O2 induced apoptotic death. Neurobiol Dis 20:141–154PubMedGoogle Scholar
  93. 93.
    Onyango IG, Tuttle JB, Bennett Jr JP (2005) Activation of p38 and N-acetyl cycteine sensitive c-Jun NH2-terminal kinase signaling cascades is required for induction of apoptosis in Parkinson’s disease cybrids. Mol Cell Neurosci 28(3):452–461PubMedGoogle Scholar
  94. 94.
    Park J, Lee S, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M, Kim J, Chung J (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441:1157–1161PubMedGoogle Scholar
  95. 95.
    Parker WD Jr, Boyson SJ, Parks JK (2007) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26(6):719–723Google Scholar
  96. 96.
    Perier C, Bove J, Wu DC, Dehay B, Choi DK, Jackson-Lewis V, Rathke-Hartlieb S, Bouillet P, Strasser A, Schulz JB, Przedborski S, Vila M (2007) Two molecular pathways initiate mitochondria-dependent dopaminergic neurodegeneration in experimental Parkinson’s disease. Proc Natl Acad Sci USA 104:8161–8166PubMedGoogle Scholar
  97. 97.
    Petit A, Kawarai T, Paitel E, Sanjo N, Maj M, Scheid M, Chen F, Gu Y, Hasegawa H, Salehi-Rad S, Wang L, Rogaeva E, Fraser P, Robinson B, St George-Hyslop P, Tandon A (2005) Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J Biol Chem 280:34025–34032PubMedGoogle Scholar
  98. 98.
    Petrovitch H, Ross GW, Abbott R, Sanderson W, Sharp D, Tanner C, Masaki K, Blanchette P, Popper J, Foley D, Launer L, White L (2002) Plantation work and risk of Parkinson disease in a population-based longitudinal study. Arch Neurol 59:1787–1792PubMedGoogle Scholar
  99. 99.
    Schapira A (2006) Etiology of Parkinson’s disease. Neurology 66:S10–S23PubMedGoogle Scholar
  100. 100.
    Schapira A (2006) Mitochondrial disease. Lancet 368:70–82PubMedGoogle Scholar
  101. 101.
    Schapira A, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–827PubMedGoogle Scholar
  102. 102.
    Shen J, Cookson M (2004) Mitochondria and dopamine: new insights into recessive parkinsonism. Neuron 43:301–304PubMedGoogle Scholar
  103. 103.
    Sherer T, Betarbet R, Greenamyre J (2002) Environment, mitochondria, and Parkinson’s disease. Neuroscientist 8:192–197PubMedGoogle Scholar
  104. 104.
    Sherer T, Betarbet R, Stout AK, Lund S, Baptista M, Panov A, Cookson M, Greenamyre J (2002) An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 22:7006–7015PubMedGoogle Scholar
  105. 105.
    Sian J, Dexter D, Jenner P, Marsden C (1991) Decreased in nigral glutathione in Parkinson’s disease. Br J Pharmacol 104:281Google Scholar
  106. 106.
    Siciliano G, Mancuso M, Ceravolo R, Lombardi V, Iudice A, Bonuccelli U (2001) Mitochondrial DNA rearrangements in young onset parkinsonism: two case reports. J Neurol Neurosurg Psychiat 71:685–687PubMedGoogle Scholar
  107. 107.
    Silvestri L, Caputo V, Bellacchio E, Atorino L, Dallapiccola B, Valente E, Casari G (2005) Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet 14:3477–3492PubMedGoogle Scholar
  108. 108.
    Singh M, Patel S, Dikshit M, Gupta Y (2006) Contribution of genomics and proteomics in understanding the role of modifying factors in Parkinson’s disease. Indian J Biochem Biophys 43:69–81PubMedGoogle Scholar
  109. 109.
    Smeyne R, Jackson-Lewis V (2005) The MPTP model of Parkinson’s disease. Brain Res Mol Brain Res 134:57–66PubMedGoogle Scholar
  110. 110.
    Smigrodzki R, Parks J, Parker W (2004) High frequency of mitochondrial complex I mutations in Parkinson’s disease and aging. Neurobiol Aging 25:1273–1281PubMedGoogle Scholar
  111. 111.
    Song D, Shults C, Sisk A, Rockenstein E, Masliah E (2004) Enhanced substantia nigra mitochondrial pathology in human α-synuclein transgenic mice after treatment with MPTP. Exp Neurol 186:158–172PubMedGoogle Scholar
  112. 112.
    Sriram K, Matheson J, Benkovic S, Miller D, Luster M, O’Callaghan J (2002) Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson’s disease. FASEB J 16:474–476Google Scholar
  113. 113.
    Strauss K, Martins L, Plun-Favreau H, Marx F, Kautzmann S, Berg D, Gasser T, Wszolek Z, Muller T, Bornemann A, Wolburg H, Downward J, Riess O, Schulz J, Kruger R (2005) Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum Mol Genet 14:2099–2111PubMedGoogle Scholar
  114. 114.
    Sulzer D, Zecca L (2000) Intraneuronal dopamine-quinone synthesis: a review. Neurotox Res 1:181–195PubMedCrossRefGoogle Scholar
  115. 115.
    Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R (2001) A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol cell Neurosci 8:613–621Google Scholar
  116. 116.
    Swerdlow RH, Parks JK, Miller SW, Tuttle JB, Trimmer PA, Sheehan JP, Bennett JP Jr, Davis RE, Parker WD Jr (1996) Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann Neurol 40(4):663–671PubMedGoogle Scholar
  117. 117.
    Takai N, Nakanishi H, Tanabe K, Nishioku T, Sugiyama T, Fujiwara M, Yamamoto K (1998) Involvement of caspase-like pin apoptosis of neural PC12 cells and primary cultures microglia induced by 6-hydroxydopamine. J Neurosci Res 54:214–222PubMedGoogle Scholar
  118. 118.
    Teismann P, Tieu K, Cohen O, Choi D, Wu D, Marks D, Vila M, Jackson-Lewis V, Przedborski S (2003) Pathologic role of glial cells in Parkinson’s disease. Movement Dis 18:121–129PubMedGoogle Scholar
  119. 119.
    Teismann P, Vila M, Choi D, Tieu K, Wu D, Jackson-Lewis V, Przedborski S (2003) Cylooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proc Natl Acad Sci USA 100:5473–5478PubMedGoogle Scholar
  120. 120.
    Thyagarajan D, Bressman S, Bruno C, Przedborski S, Shanske S, Lynch T, Fahn S, DiMauro S (2000) A novel mitochondrial 12S rRNA point mutation in Parkinsonism, deafness and neuropathy. Ann Neurol 48:730–736PubMedGoogle Scholar
  121. 121.
    Trifunovic A, Hansson A, Wredenberg A, Rovio A, Dufour E, Khvorostov I, Spelbrink J, Wibom R, Jacobs H, Larsson N (2005) Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc Natl Acad Sci USA 102:17993–17998PubMedGoogle Scholar
  122. 122.
    Trimmer PA, Borland MK, Keeney PM, Bennett JP Jr, Parker WD Jr (2004) Parkinson’s disease transgenic mitochondrial cybrids generate Lewy inclusion bodies. J Neurochem 88(4):800–812PubMedCrossRefGoogle Scholar
  123. 123.
    van der Walt J, Nicodemus K, Martin E, Scott W, Nance M, Watts R, Hubble J, Haines J, Koller W, Lyons K, Pahwa R, Stern M, Colcher A, Hiner B, Jankovic J, Ondo W, Allen FJ, Goetz C, Small G, Mastaglia F, Stajich J, McLaurin A, Middleton L, Scott B, Schmechel D, Pericak-Vance M, Vance J (2003) Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease. Am J Hum Genet 72:804–811PubMedGoogle Scholar
  124. 124.
    Vijitruth R, Liu M, Choi D, Nguyen X, Hunter R, Bing G (2006) Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson’s disease. J Neuroinflammation 3:1742–2094Google Scholar
  125. 125.
    von Bohlen und Halbach O, Schober A, Krieglstein K (2004) Genes, proteins, and neurotoxins involved in Parkinson’s disease. Prog Neurobiol 73:151–177Google Scholar
  126. 126.
    Waragai M, Wei J, Fujita M, Nakai M, Ho G, Masliah E, Akatsu H, Yamada T, Hashimoto M (2006) Increased level of DJ-1 in the cerebrospinal fluids of sporadic Parkinson's disease. Biochem Biophys Res Commun 345(3):967–972PubMedGoogle Scholar
  127. 127.
    Welty-Wolf K, Simonson S, Huang Y, Fracica P, Patterson J, Piantadosi C (1996) Ultrastructural changes in skeletal muscle mitochondria in Gram-negative sepsis. Shock 5:378–384PubMedGoogle Scholar
  128. 128.
    West A, Moore D, Biskup S, Bugayenko A, Smith W, Ross C, Dawson V, Dawson T (2005) Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci USA 102:16842–16847PubMedGoogle Scholar
  129. 129.
    Wood-Kaczmar A, Gandhi S, Wood N (2006) Understanding the molecular causes of Parkinson’s disease. Trends Mol Med 12:521–528PubMedGoogle Scholar
  130. 130.
    Wu D, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, Przedborski S (2003) NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci USA 100:6145–6150PubMedGoogle Scholar
  131. 131.
    Xie Z, Smith C, Van Eldik L (2004) Activated glia induce neuron death via MAP kinase signaling pathways involving JNK and p38. Glia 45:170–179PubMedGoogle Scholar
  132. 132.
    Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman E, Mizuno Y (1996) Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci USA 93:2696–2701PubMedGoogle Scholar
  133. 133.
    Zhang J, Stanton D, Nguyen X, Liu M, Zhang Z, Gash D, Bing G (2005) Intrapallidal lipopolysaccharide injection increases iron and ferritin levels in glia of the rat substantia nigra and induces locomotor deficits. Neuroscience 135:829–838PubMedGoogle Scholar
  134. 134.
    Zhu J-H, Guo F, Shelburne J, Watkins S, Chu C (2003) Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewy body diseases. Brain Pathol 13:473–481PubMedCrossRefGoogle Scholar
  135. 135.
    Zhu J-H, Kulich S, Oury T, Chu C (2002) Cytoplasmic aggregates of phosphorylated extracellular signal-regulated kinase in Lewy body diseases. Am J Pathol 161:2087–2098PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Center for the Study of Neurodegenerative DiseasesUniversity of Virginia School of MedicineCharlottesvilleUSA
  2. 2.Department of NeurologyUniversity of Virginia School of MedicineCharlottesvilleUSA
  3. 3.Department of NeuroscienceUniversity of Virginia School of MedicineCharlottesvilleUSA
  4. 4.University of VirginiaCharlottesvilleUSA

Personalised recommendations