Neurochemical Research

, Volume 33, Issue 1, pp 59–65 | Cite as

Identification of the Nucleotidase Responsible for the AMP Hydrolysing Hyperactivity Associated with Neurological and Developmental Disorders

  • Rossana Pesi
  • Marcella Camici
  • Vanna Micheli
  • Laura Notarantonio
  • Gabriella Jacomelli
  • Maria Grazia Tozzi
Original Paper


Nucleoside monophosphate phosphohydrolases comprise a family of enzymes dephosphorylating nucleotides both in intracellular and extracellular compartments. Members of this family exhibit different sequence, location, substrate specificity and regulation. Besides the ectosolic 5′-nucleotidase, several cytosolic and one mitochondrial enzymes have been described. Nevertheless, researchers refer any AMP-dephosphorylating activity to as 5′-nucleotidase, lacking a more accurate identification. Increase of AMP hydrolysing activity has been associated with neurological and developmental disorders. The identification of the specific enzyme involved in these pathologies would be fundamental for the comprehension of the linkage between the enzyme activity alteration and brain functions. We demonstrate that the described neurological symptoms are associated with increased ectosolic 5′-nucleotidase activity on the basis of radiochemical assays and immunoblotting analysis. Furthermore, present data evidence that the assay conditions normally applied for the determination of cytosolic 5′-nucleotidases activity in crude extracts are affected by the presence of solubilised ectosolic nucleotidase.


5′-Nucleotidase Neurological disorders Developmental delay Fibroblast culture Nucleotidase assay 



This work was supported by local funds of the University of Pisa and the research funds of the University of Siena (PAR 2004, 2005 and 2006). We thank Dr. Tony Marinaki and Dr. Tina Slade of Guy’s Hospital London Great Britain, Dr. Ulrich Frank, Sozialpädiatrisches Zentrum, Braunschweig, Germany, Dr. Gigliola Serra, Istituto di Neuropsichiatria Infantile, Università di Sassari, Italy, for providing fibroblasts of patients and controls.


  1. 1.
    Bianchi V, Spychala J (2003) Mammalian 5′-nucleotidases. J Biol Chem 278:46195–46198PubMedCrossRefGoogle Scholar
  2. 2.
    Sala-Newby GB, Skladanowsky AC, Newby AC, Makarewicz W (1999) The mechanism of adenosine formation in cells. Cloning of cytosolic 5′-nucleotidase-I. Purification and some molecular properties of pigeon heart AMP-selective 5′-nucleotidase. J Biol Chem 274:17789–17793PubMedCrossRefGoogle Scholar
  3. 3.
    Allegrini S, Pesi R, Tozzi MG, Fiol JC, Johnson RB, Eriksson S (1997) Bovine cytosolic IMP/GMP specific 5′-nucleotidase: cloning and expression of active enzyme in Escherichia coli. Biochem J 328:483–487PubMedGoogle Scholar
  4. 4.
    Amici A, Emanuelli M, Raffaelli N, Ruggeri S, Saccucci F, Magni G (2000) Human erythrocyte pyrimidine 5′-nucleotidase, PN-I, is identical to p36, a protein associated to lupus inclusion formation in response to alpha-interferon. Blood 96:1596–1598PubMedGoogle Scholar
  5. 5.
    Rampazzo C, Gallinaro L, Milanesi E, Frigimelica E, Reichard P, Bianchi V (2000) A deoxynucleotidase in mitochondria; involvement in regulation of dNTP pools and possible link to genetic disease. Proc Natl Acad Sci USA 97:8239–8244PubMedCrossRefGoogle Scholar
  6. 6.
    Rampazzo C, Johansson M, Gallinaro L, Ferraro P, Hellman U, Karlsson A, Reichard P, Bianchi V (2000) Mammalian 5′(3′)-deoxyribonucleotidase, cDNA cloning, and overexpression of the enzyme in Escherichia coli and mammalian cells. J Biol Chem 275:5409–5415PubMedCrossRefGoogle Scholar
  7. 7.
    Sala-Newby GB, Newby AC (2001) Cloning of a mouse cytosolic 5′-nucleotidase I identifies a new gene related to human autoimmune infertility-related protein. Biochim Biophys Acta 1521:12–18PubMedGoogle Scholar
  8. 8.
    Allegrini S, Scaloni A, Ferrara L, Pesi R, Pinna P, Sgarrella F, Camici M, Eriksson S, Tozzi MG (2001) Bovine cytosolic 5′-nucleotidase acts through the formation of an aspartate 52-phosphoenzyme intermediate. J Biol Chem 276:33526–33532PubMedCrossRefGoogle Scholar
  9. 9.
    Aravind L, Galperin MY, Koonin EV (1998) The catalytic domain of the P-type ATPase has the haloacid dehalogenase fold. Trends Biol Sci 23:127–129CrossRefGoogle Scholar
  10. 10.
    Rinaldo-Matthis A, Rampazzo C, Reichard P, Bianchi V, Nordlund P (2002) Crystal structure of a human mitochondrial deoxyribonucleotidase. Nat Struct Biol 9:779–786PubMedCrossRefGoogle Scholar
  11. 11.
    Garvey EP, Lowen GT, Almond MK (1998) Nucleotide and nucleoside analogues as inhibitors of cytosolic 5′-nucleotidase I from heart. Biochemistry 37:9043–9051PubMedCrossRefGoogle Scholar
  12. 12.
    Itoh R (1993) IMP-GMP 5′-nucleotidase. Comp Biochem Physiol 105B:13–19Google Scholar
  13. 13.
    Gallinaro L, Crovatto K, Rampazzo C, Pontarin C, Ferraro P, Milanesi E, Reichard P, Bianchi V (2002) Human mitochondrial 5′-deoxynucleotidase. J Biol Chem 277:35080–35087PubMedCrossRefGoogle Scholar
  14. 14.
    Page T, Yu A, Fontanesi J, Nyhan WL (1997) Developmental disorder associated with increased cellular nucleotidase activity. Proc Natl Acad Sci 94:11601–11606PubMedCrossRefGoogle Scholar
  15. 15.
    Pesi R, Micheli V, Jacomelli G, Peruzzi L, Camici M, Garcia-Gil M, Allegrini S, Tozzi MG (2000) Cytosolic 5′-nucleotidase hyperactivity in erythrocytes of Lesch-Nyhan syndrome patients. NeuroReport 11:1827–1831PubMedCrossRefGoogle Scholar
  16. 16.
    Hardie DG, Carling D (1997) The AMP-activated protein kinase: fuel gauge of the mammalian cell. Eur J Biochem 246:259–273PubMedCrossRefGoogle Scholar
  17. 17.
    Sweeney MI (1997) Neuroprotective effects of adenosine in cerebral ischemia: window and opportunity. Neurosci Biobehav Rev 21:207–217PubMedCrossRefGoogle Scholar
  18. 18.
    Sala-Newby GB, Freeman NVE, Skladanowski AC, Newby AC (2000) Distinct roles for recombinant cytosolic 5′-nucleotidase-I and –II in AMP and IMP catabolism in COS-7 and H9c2 rat myoblast cell lines. J Biol Chem 275:11666–11671PubMedCrossRefGoogle Scholar
  19. 19.
    Micheli V, Sestini S, Rocchigiani M, Jacomelli G, Manzoni M, Peruzzi L, Gathof BS, Zammarchi E, Pompucci G (1999) Hypoxanthine-guanine phosphoribosyltransferase deficiency and erythrocyte synthesis of pyridine coenzymes. Life Sci 64:2479–2487PubMedCrossRefGoogle Scholar
  20. 20.
    Bradford M (1979) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  21. 21.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685CrossRefGoogle Scholar
  22. 22.
    Tozzi MG, Camici M, Pesi R, Allegrini S, Sgarrella F, Ipata PL (1991) Nucleoside phosphotransferase activity of human colon carcinoma cytosolic 5′-nucleotidase. Arch Biochem Biophys 291:212–217PubMedCrossRefGoogle Scholar
  23. 23.
    Vogel M, Kowalewski HJ, Zimmermann H, Hooper NM, Turner AJ (1992) Soluble low Km 5′-nucleotidase from electric ray electric organ and bovine cerebral cortex is derived from the GPI-anchored ectoenzyme by phospholipase C cleavage. Biochem J 284:621–624PubMedGoogle Scholar
  24. 24.
    Camici M, Fini C, Ipata PL (1985) Isolation and kinetic properties of 5′-nucleotidase from guinea-pig skeletal muscle. Biochim Biophys Acta 840:6–12PubMedGoogle Scholar
  25. 25.
    Ernst M, Zametkin AJ, Matochik JA, Pascualvaca D, Jons PH, Hardy K, Hankerson JG, Doudet DJ, Cohen RM (1996) Presynaptic dopaminergic deficits in Lesch-Nyhan disease. New Engl J Med 334:1568–1604PubMedCrossRefGoogle Scholar
  26. 26.
    Jaeken J, Van der Berghe G (1984) An infantile autistic syndrome characterised by the presence of succinylpurines in body fluids. Lancet 2:1058–1061PubMedGoogle Scholar
  27. 27.
    Kredich NM, Holmes EW (1990) The metabolic basis of inherited disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) Mc Grow-Hill, New York, pp 1045–1076Google Scholar
  28. 28.
    Rampazzo C, Mazzon C, Reichard P, Bianchi V (2002) 5′-Nucleotidases: specific assays for five different enzymes in cell extracts. Biochim Biophys Res Comm 293:258–263CrossRefGoogle Scholar
  29. 29.
    Connoly GP (1998) Fibroblast models of neurological disorders: fluorescence measurement studies. Trends Pharmacol Sci 19:171–177CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Rossana Pesi
    • 1
  • Marcella Camici
    • 1
  • Vanna Micheli
    • 2
  • Laura Notarantonio
    • 2
  • Gabriella Jacomelli
    • 2
  • Maria Grazia Tozzi
    • 1
  1. 1.Dipartimento di BiologiaUniversità di PisaPisaItaly
  2. 2.Dipartimento di Biologia MolecolareUniversità di SienaSienaItaly

Personalised recommendations