Neurochemical Research

, Volume 32, Issue 11, pp 1990–2001 | Cite as

New Molecular Mechanisms on the Activation of TRPM2 Channels by Oxidative Stress and ADP-Ribose



The Na+ and Ca2+-permeable melastatin related transient receptor potential (TRPM2) cation channels can be gated either by ADP-ribose (ADPR) in concert with Ca2+ or by hydrogen peroxide (H2O2), an experimental model for oxidative stress, and binding to the channel’s enzymatic Nudix domain. Since the mechanisms that lead to TRPM2 inhibiting in response to ADPR and H2O2 are not understood, I reviewed the effects of various inhibitors such as flufenamic acid and PARP inhibitors on ADPR, NAD+ and H2O2-induced TRPM2 currents. In our experimental study, TRPM2 cation channels in chinese hamster ovary transected cells were gated both by ADPR and NAD+. In addition, H2O2 seems to activate TRPM2 by changing to the hydroxyl radical in the intracellular space after passing the plasma membrane. Experimental studies with respect to patch-clamp and Ca2+ imaging, inhibitor roles of antioxidants are also summarized in the review.


TRPM2 Calcium Antioxidants Oxidative stress ADP-ribose 



Adenosine diphosphatase ribose


Adenine nucleotide translocases


Chinese hamster ovary


Cambridge rat insulinoma G1


Diacyl glycerol






Endothelial nitric oxide synthase


Flufenamic acid


Glutathione reductases




Glutathione peroxidase


Oxidized glutathione


Human embryonic kidney






Neuronal nitric oxide synthase


Nitric oxide


Nitric oxide synthase


Poly(ADP-ribose) glycohydrolase


Poly(ADP-ribose) polymerase


Permeability transition pores


Reactive nitrogen species


Reactive oxygen species


Superoxide dismutase


Transient receptor potential



The author thanks to Dr. Jim W. Jr Putney on comments of the manuscript in National Institute of Environmental Health Sciences, NIH, NC, USA.


  1. 1.
    Cheeseman KH, Slater TF (1993) An introduction to free radical biochemistry. Br Med Bull 49:481–493PubMedGoogle Scholar
  2. 2.
    Halliwell B, Gutteridge JMC (1999) Free radicals, other reactive species and disease. In: Halliwell B, Gutteridge JMC (eds) Free radicals in Biology and Medicine, 3rd ed. Oxford University Press, New York, pp. 639–645Google Scholar
  3. 3.
    Akyol O, Herken H, Uz E, Fadillioglu E, Unal S, Sogut S, Ozyurt H, Savas HA (2002) The indices of endogenous oxidative and antioxidative processes in plasma from schizophrenic patients. The possible role of oxidant/antioxidant imbalance. Prog Neuropsychopharmacol Biol Psychiatry 26:995–1005PubMedCrossRefGoogle Scholar
  4. 4.
    Szabo C (2005) Roles of poly(ADP-ribose) polymerase activation in the pathogenesis of diabetes mellitus and its complications. Pharmacol Res 52:60–71PubMedCrossRefGoogle Scholar
  5. 5.
    Nathan C, Xie OW (1994) Regulation of biosynthesis of nitric oxide. J Biol Chem 269:13725–13728PubMedGoogle Scholar
  6. 6.
    Xu S, Touyz RM (2006) Reactive oxygen species and vascular remodelling in hypertension: still alive. Can J Cardiol 22:947–951PubMedGoogle Scholar
  7. 7.
    Xia Y, Roman LJ, Masters BS, Zweier JL (1998) Inducible nitric-oxide synthase generates superoxide from the reductase domain. Biol Chem 273:22635–22639CrossRefGoogle Scholar
  8. 8.
    Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624PubMedCrossRefGoogle Scholar
  9. 9.
    Heinzel B, John M, Klatt P, Bohme E, Mayer B (1992) Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase. Biochem J 281(Pt 3):627–630PubMedGoogle Scholar
  10. 10.
    Clementi E, Brown GC, Feelisch M, Moncada S (1998) Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci USA 95:7631–76636PubMedCrossRefGoogle Scholar
  11. 11.
    Naziroglu M, Şimşek M, Kutlu M (2004) Moderate exercise with dietary vitamin C and E combination protects streptozotocin- induced oxidative damage to the blood and improves fetal outcomes in pregnant rats. Clin Chem Lab Med 42:511–517PubMedCrossRefGoogle Scholar
  12. 12.
    Naziroglu M, Karaoglu A, Aksoy AO (2004) Selenium and high dose vitamin E administration protects cisplatin-induced oxidative damage to renal, liver and lens tissues in rats. Toxicology 195:221–230PubMedCrossRefGoogle Scholar
  13. 13.
    Whanger PD (2001) Selenium and the brain: a review. Nutr Neurosci 4:81–97PubMedGoogle Scholar
  14. 14.
    Czernichow S, Hercberg S (2001) Interventional studies concerning the role of antioxidant vitamins in cardiovascular diseases: a review. J Nutr Health Aging 5:188–195PubMedGoogle Scholar
  15. 15.
    Naziroglu M (2006) Effects of physical exercise with a dietary vitamins C and E combination on oxidative stress in muscle, liver and brain of streptozotocin- induced diabetic pregnant rat. In: Braunstain MH (ed) Vitamin E: New Research. Nova Science Publishers Inc., NY, USA, pp. 69–83Google Scholar
  16. 16.
    Arrigoni O, De Tullio MC (2002) Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta 1569:1–9PubMedGoogle Scholar
  17. 17.
    Baydas G, Kutlu S, Naziroglu M, Canpolat S, Sandal S, Ozcan M, Keleştimur H (2003) Inhibitory effects of melatonin on lipid peroxidation induced by intracerebroventricularly administered homocysteine. J Pineal Res 34:36–39PubMedCrossRefGoogle Scholar
  18. 18.
    Kukner AS, Kukner A, Naziroglu M, Colakoglu N, Celebi S, Yılmaz T, Aydemir O (2004) Protective effects of intraperitoneal vitamin C, aprotinin and melatonin administration on retinal edema during experimental uveitis in the guinea pig. Cell Biochem Funct 22:299–305PubMedCrossRefGoogle Scholar
  19. 19.
    Naziroglu M, Brandsch C (2006) Dietary hydrogenated soybean oil affects lipid and vitamin E metabolism in rats. J Nutr Sci Vitaminol (Tokyo) 52:83–88CrossRefGoogle Scholar
  20. 20.
    Chandra J, Samali A, Orrenius S (2000) Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med 29:323–333PubMedCrossRefGoogle Scholar
  21. 21.
    Sattler M, Verma S, Shrikhande G, Byrne CH, Pride YB, Winkler T, Greenfield EA, Salgia R, Griffin JD (2000) The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cells. J Biol Chem 275:24273–24278PubMedCrossRefGoogle Scholar
  22. 22.
    Bauer MK, Vogt M, Los M, Siegel J, Wesselborg S, Schulze-Osthoff K (1998) Role of reactive oxygen intermediates in activation-induced CD95 (APO-1/Fas) ligand expression. J Biol Chem 273:8048–8055PubMedCrossRefGoogle Scholar
  23. 23.
    Matsura T, Kai M, Fujii Y, Ito H, Yamada K (1999) Hydrogen peroxide-induced apoptosis in HL-60 cells requires caspase-3 activation. Free Radic Res 30:73–83PubMedCrossRefGoogle Scholar
  24. 24.
    Ascensao AA, Magalhaes JF, Soares JM, Ferreira RM, Neuparth MJ, Appell HJ, Duarte JA (2005) Cardiac mitochondrial respiratory function and oxidative stress: the role of exercise. Int J Sports Med 26:258–267PubMedCrossRefGoogle Scholar
  25. 25.
    Crompton M (2004) Mitochondria and aging: a role for the permeability transition? Aging Cell 3:3–6PubMedCrossRefGoogle Scholar
  26. 26.
    Chakraborti T, Das S, Mondal M, Roychoudhury S, Chakraborti S (1999) Oxidant, mitochondria and calcium: an overview. Cell Signal 11:77–85PubMedCrossRefGoogle Scholar
  27. 27.
    Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427:461–465PubMedCrossRefGoogle Scholar
  28. 28.
    Vercesi AE, Kowaltowski AJ, Grijalba MT, Meinicke AR, Castilho RF (1997) The role of reactive oxygen species in mitochondrial permeability transition. Biosci Rep 7:43–52CrossRefGoogle Scholar
  29. 29.
    Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524PubMedCrossRefGoogle Scholar
  30. 30.
    Miller BA (2006) The role of TRP channels in oxidative stress-induced cell death. J Membr Biol 209:31–41PubMedCrossRefGoogle Scholar
  31. 31.
    Perraud AL, Schmitz C, Scharenberg AM (2003) TRPM2 Ca2+ permeable cation channels: from gene to biological function. Cell Calcium 33:519–531PubMedCrossRefGoogle Scholar
  32. 32.
    Zhang W, Chu X, Tong Q, Cheung JY, Conrad K, Masker K, Miller BA (2003) A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death. J Biol Chem 278:16222–16229PubMedCrossRefGoogle Scholar
  33. 33.
    Heiner I, Eisfeld J, Luckhoff A (2003) Role and regulation of TRP channels in neutrophil granulocytes. Cell Calcium 33:533–540PubMedCrossRefGoogle Scholar
  34. 34.
    Massullo P, Sumoza-Toledo A, Bhagat H, Partida-Sanchez S (2007) TRPM channels, calcium and redox sensors during innate immune responses. Semin Cell Dev Biol 17:654–666CrossRefGoogle Scholar
  35. 35.
    Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595–599PubMedCrossRefGoogle Scholar
  36. 36.
    Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S (2006) Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res 26:159–178PubMedCrossRefGoogle Scholar
  37. 37.
    Fleig A, Penner R (2004) The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol Sci 25:633–639PubMedCrossRefGoogle Scholar
  38. 38.
    Wehage E, Eisfeld J, Heiner I, Jüngling E, Zitt C, Luckhoff A. (2002) Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP- ribose. J Biol Chem 277:23150–23156PubMedCrossRefGoogle Scholar
  39. 39.
    Inamura K, Sano Y, Mochizuki S, Yokoi H, Miyake A, Nozawa K, Kitada C, Matsushime H, Furuichi K (2003) Response to ADP-ribose by activation of TRPM2 in the CRI-G1 insulinoma cell line. J Membr Biol 191:201–207PubMedCrossRefGoogle Scholar
  40. 40.
    Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T et al (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9:163–173PubMedCrossRefGoogle Scholar
  41. 41.
    Kolisek M, Beck A, Fleig A, Penner R (2005) Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol Cell 18:61–69PubMedCrossRefGoogle Scholar
  42. 42.
    McHugh D, Flemming R, Xu SZ, Perraud AL, Beech DJ (2003) Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J Biol Chem 278:11002–11006PubMedCrossRefGoogle Scholar
  43. 43.
    Kuhn FJ, Luckhoff A (2004) Sites of the NUDT9-H domain critical for ADP-ribose activation of the cation channel TRPM2. J Biol Chem 279:46431–46437PubMedCrossRefGoogle Scholar
  44. 44.
    Kuhn FJ, Heiner I, Luckhoff A (2005) TRPM2: a calcium influx pathway regulated by oxidative stress and the novel second messenger ADP-ribose. Pflugers Arch 451:212–219PubMedCrossRefGoogle Scholar
  45. 45.
    Guse AH (2005) Second messenger function and the structure-activity relationship of cyclic adenosine diphosphoribose (cADPR). FEBS J 272:4590–4597PubMedCrossRefGoogle Scholar
  46. 46.
    Perraud AL, Takanishi CL, Shen B, Kang S, Smith MK, Schmitz C, Knowles HM, Ferraris D, Li W, Zhang J, Stoddard BL, Scharenberg AM (2005) Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J Biol Chem 280:6138–6148PubMedCrossRefGoogle Scholar
  47. 47.
    Fonfria E, Marshall IC, Benham CD, Boyfield I, Brown JD, Hill K, Hughes JP, Skaper SD, McNultym S (2004) TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br J Pharmacol 143:186–192PubMedCrossRefGoogle Scholar
  48. 48.
    Fonfria E, Marshall IC, Boyfield I, Skaper SD, Hughes JP, Owen DE, Zhang W, Miller BA, Benham CD, McNulty S (2005) Amyloid beta-peptide(1-42) and hydrogen peroxide-induced toxicity are mediated by TRPM2 in rat primary striatal cultures. J Neurochem 95:715–723PubMedCrossRefGoogle Scholar
  49. 49.
    Gasser A, Glassmeier G, Fliegert R, Langhorst MF, Meinke S, Hein D, Kruger S, Weber K, Heiner I, Oppenheimer N, Schwarz JR, Guse AH (2006) Activation of T cell calcium influx by the second messenger ADP-ribose. J Biol Chem 281:2489–2496PubMedCrossRefGoogle Scholar
  50. 50.
    Heiner I, Eisfeld J, Warnstedt M, Radukina N, Jungling E, Luckhoff A (2006) Endogenous ADP-ribose enables calcium-regulated cation currents through TRPM2 channels in neutrophil granulocytes. Biochem J 398:225–232PubMedCrossRefGoogle Scholar
  51. 51.
    Naziroglu M, Luckhoff A, Jungling E (2007) Antagonist effect of flufenamic acid on TRPM2 cation channels activated by hydrogen peroxide. Cell Biochem Funct 25; Jul 19; DOI: 10.1027/cbf.1330Google Scholar
  52. 52.
    Naziroglu, M (2006) Non reversible activation of TRPM2 cation channels by hydrogen peroxide: Antioxidants haven’t inbitor role on the activation. XIII. Congress of the Society for Free Radical Research International, Davos (Switzerland), August, 15–19 2006. Medimond International Proceedings 2006, 241–245Google Scholar
  53. 53.
    Ishii M, Shimizu S, Hara Y, Hagiwara T, Miyazaki A, Mori Y, Kiuchi Y (2006) Intracellular-produced hydroxyl radical mediates H2O2-induced Ca2+ influx and cell death in rat beta-cell line RIN-5F. Cell Calcium 39:487–494PubMedCrossRefGoogle Scholar
  54. 54.
    Ishii M, Shimizu S, Hagiwara T, Wajima T, Miyazaki A, Mori Y, Kiuchi Y (2006) Extracellular-added ADP-ribose increases intracellular free Ca2+ concentration through Ca2+ release from stores, but not through TRPM2-mediated Ca2+ entry, in rat beta-cell line RIN-5F. J Pharmacol Sci 101:174–178PubMedCrossRefGoogle Scholar
  55. 55.
    Randell EW, Parkes JG, Olivieri NF, Templeton DM (1994) Templeton, Uptake of non-transferrin-bound iron by both reductive and nonreductive processes is modulated by intracellular iron. J Biol Chem 269:16046–16053PubMedGoogle Scholar
  56. 56.
    Mwanjewe J, Grover AK (2004) Role of transient receptor potential canonical 6 (TRPC6) in non transferrin-bound iron uptake in neuronal phenotype PC12 cells, Biochem J 378:975–982PubMedCrossRefGoogle Scholar
  57. 57.
    Butterfield DA (2003) Butterfield DA. Amyloid beta-peptide [1-42]-associated free radical-induced oxidative stres and neurodegeneration in Alzheimer’s disease brain: mechanisms and consequences. Curr Med Chem 10:2651–2659PubMedCrossRefGoogle Scholar
  58. 58.
    Szydlowska K, Zawadzka M, Kaminska B (2006) Neuroprotectant FK506 inhibits glutamate-induced apoptosis of astrocytes in vitro and in vivo. J Neurochem 99:965–975PubMedCrossRefGoogle Scholar
  59. 59.
    Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, Matsushime H, Furuichi K (2001) Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293:1327–1330PubMedCrossRefGoogle Scholar
  60. 60.
    Pieri C, Marra M, Moroni F, Recchioni R, Marcheselli F (1994) Melatonin: a peroxyl radical scavenger more effective than vitamin E. Life Sci 55:PL271–PL276PubMedCrossRefGoogle Scholar
  61. 61.
    Hill K, Benham CD, McNulty S, Randall AD (2004) Flufenamic acid is a pH-dependent antagonist of TRPM2 channels. Neuropharmacology 47:450–460PubMedCrossRefGoogle Scholar
  62. 62.
    Hill K, McNulty S, Randall AD (2004) Inhibition of TRPM2 channels by the antifungal agents clotrimazole and econazole. Naunyn Schmiedebergs Arch Pharmacol 370:227–237PubMedCrossRefGoogle Scholar
  63. 63.
    Lee RJ, Shaw T, Sandquist M, Partridge LD (1996) Mechanism of action of the non-steroidal anti-inflammatory drug flufenamate on [Ca2+]i and Ca(2+)-activated currents in neurons. Cell Calcium 19:431–438PubMedCrossRefGoogle Scholar
  64. 64.
    Heiner I, Radukina N, Eisfeld J, Kuhn F, Luckhoff A (2005) Regulation of TRPM2 channels in neutrophil granulocytes by ADP-ribose: a promising pharmacological target. Naunyn Schmiedebergs Arch Pharmacol 371:325–333PubMedCrossRefGoogle Scholar
  65. 65.
    Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2:596–607PubMedCrossRefGoogle Scholar
  66. 66.
    Zhang W, Hirschler-Laszkiewicz I, Tong Q, Conrad K, Sun SC, Penn L, Barber DL, Stahl R, Carey DJ, Cheung JY, Miller BA (2006) TRPM2 is an ion channel that modulates hematopoietic cell death through activation of caspases and PARP cleavage. Am J Physiol Cell Physiol 290:C1146–C1159PubMedCrossRefGoogle Scholar
  67. 67.
    Kraft R, Grimm C, Grosse K, Hoffmann A, Sauerbruch S, Kettenmann H, Schultz G, Harteneck C (2004) Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am J Physiol Cell Physiol 286:C129–C137PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Biophysics, Medical (TIP) FacultySüleyman Demirel UniversityCunur, IspartaTurkey

Personalised recommendations