Neurochemical Research

, Volume 32, Issue 6, pp 1036–1040 | Cite as

Assessment of Antioxidant Effect of 2,5-Dihydroxybenzoic Acid and Vitamin A in Brains of Rats with Induced Hyperoxia

  • David Calderón Guzmán
  • Francisca Trujillo Jiménez
  • Ernestina Hernández García
  • Hugo Juárez Olguín
Original Paper


The aim of this study was to evaluate the effect of 2,5-dihydroxybenzoic acid, a salicylate derived from Acetyl salicylic acid (ASA) and vitamin A (vit A) on Na+, K+ ATPase enzyme and GSH levels in brain of rats exposed to hyperoxia (Hyp) as oxidant protocol. Rats were treated as follow: group I (control), group II (Hyp), group III (Hyp, ASA), group IV (vit A), group V (Hyp, vit A), group VI (Hyp, vit A, ASA). Vit A was given 5 days before and during Hyp, aspirin at the end of Hyp. Na+,K+ ATPase and total ATPase activity was significantly increased in group V. Levels of GSH showed a significant increase in group III, besides, levels of 2,5-dihydroxybenzoic acid as salicylate in plasma were significantly increased in group II. These results elucidate differences in the biochemical response of animal towards intake of various types of antioxidant substances, with increased GSH and salicylate in hyperoxia.


Acetyl salicylic acid Antioxidants Brain Free radicals Vitamin A 


  1. 1.
    Sandrini M, Ottani A, Vitale G et al (1998) Acetylsalicylic acid potentiates the antinociceptive effect of morphine in the rat: involvement of the central serotonergic system. Eur J Pharmacol 355:133–140PubMedCrossRefGoogle Scholar
  2. 2.
    Grootveld M, Halliwell B (1998) 2,3-Dihydroxybenzoic acid is a product of human aspirin metabolism. Biochem Pharmacol 37:271–280CrossRefGoogle Scholar
  3. 3.
    Guerrero A, González-Correa JA, Arrebola MM et al (2004) Antioxidant effects of a single dose of acetylsalicylic acid and salicylic acid in rat brain slices subjected to oxygen-glucose deprivation in relation with its antiplatelet effect. Neurosci Lett 358:153–156PubMedCrossRefGoogle Scholar
  4. 4.
    Carney JM, Starke-Reed PE, Oliver CN et al (1991) Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss of temporal and spatial memory by chronic administration of the spin trapping compound N-tert-butyl-alfa-phenylnitrone. Proc Natl Acad Sci 88:3633–3636PubMedCrossRefGoogle Scholar
  5. 5.
    Gutteridge JM, Halliwell B (1990) The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem Sci 15:129–135PubMedCrossRefGoogle Scholar
  6. 6.
    Beckman JS, Beckman TW, Chen J et al (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxides. Proc Natl Acad Sci 87:1629–1624CrossRefGoogle Scholar
  7. 7.
    Philipp E, Pirke KM (1987) Effect of starvation on hypothalamic tyrosine hydroxylase activity in adult male rats. Brain Res 413:53–59PubMedCrossRefGoogle Scholar
  8. 8.
    Kagedal B, Golstein DS (1988) Catecholamines and their metabolites. J Chromatog 429:177–233CrossRefGoogle Scholar
  9. 9.
    Swapna I, Sathya KV, Murthy CR et al (2005) Membrane alterations and fluidity changes in cerebral cortex during ammonia intoxication. Neuro Toxicol 335:700–704Google Scholar
  10. 10.
    Stefanello FM, Chiarani F, Kurek AG (2005) Methionine alters Na+, K+ ATPase activity, lipid peroxidation and nonenzymatic antioxidant defenses in rat hippocampus. Int J Dev Neurosci 23:651–656PubMedCrossRefGoogle Scholar
  11. 11.
    Rokyta R, Holecek V, Pekarkova I et al (2003) Free radical after painful stimulation are influenced by antioxidants and analgesics. Neuro Endocrinol Lett 24:304–309PubMedGoogle Scholar
  12. 12.
    Tyrala EE (1993) Zinc and copper balances in preterm infants. Pediatrics 7:513–517Google Scholar
  13. 13.
    Kelly FJ (1993) Free radical disorders of preterm infants. Brit Med Bull 49:668–678PubMedGoogle Scholar
  14. 14.
    Augustyniak A, Michalak K, Skrzydlewska E (2005) The action of oxidative stress induced by ethanol on the central nervous system (CNS). Postepy Hig Med Dosw 59:464–471Google Scholar
  15. 15.
    De la Cruz JP, Guerrero A, González-Correa JA et al (2004) Antioxidant effect of acetylsalicylic and salicylic acid in rat brain slices subjected to hypoxia. J Neurosci Res 75:280–290PubMedCrossRefGoogle Scholar
  16. 16.
    Zaidi SM, Banu N (2004) Antioxidant potential of vitamin A, E and C in modulating oxidative stress in rat brain. Clin Chem Acta 340:229–233CrossRefGoogle Scholar
  17. 17.
    Weber CA, Duncan CA, Lyons MJ et al (1990) Depletion of tissue glutathione with diethyl maleate enhances hyperbaric oxygen toxicity. Am J Physiol 258:308–312Google Scholar
  18. 18.
    Calderón GD, Espitia VI, López DA et al (2005) Effect of toluene and nutritional status on serotonin, lipid peroxidation levels and Na+/K+-ATPase in adult rat brain. Neurochem Res 5:1–6Google Scholar
  19. 19.
    Bonting SL, Simon KA, Hawkins NM (1961) Studies on sodium–potassium-activated adenosine triphosphatase. Arch Biochem Biophys 95:416–423PubMedCrossRefGoogle Scholar
  20. 20.
    Asensi M, Sastre J, Pallardó FV et al (1994) High-performance liquid chromatography method for measurement of oxidized glutathione in biological samples. Anal Biochem 217:323–328PubMedCrossRefGoogle Scholar
  21. 21.
    Coudray C, Talla M, Martin S et al (1995) High-performance liquid chromatography-electrochemical determination of salicylate hydroxylation products as an in vivo marker of oxidative stress. Anal Biochem 227:101–111PubMedCrossRefGoogle Scholar
  22. 22.
    Castilla-Serna L (1999) Estadística simplificada para la investigación en Ciencias de la Salud. Editorial Trillas. 2° Edición. México, D.FGoogle Scholar
  23. 23.
    O’Connell MJ, Webster NR (1990) Hyperoxia and salicylate metabolism in rats. J Pharmacy Pharmacol 42:205–206Google Scholar
  24. 24.
    Chen JW, Zhang L, Lian X et al (1992) Effect of hydroxyl radical on Na(+)–K(+)-ATPase activity of the brain microsomal membranes. Cell Biol Int Rep 16:927–936PubMedCrossRefGoogle Scholar
  25. 25.
    Surai PF, Kuklenko TV, Ionov IA et al (2000) Effect of vitamin A on the antioxidant system of the chick during early postnatal development. Brit Poultry Sci 41:454–458Google Scholar
  26. 26.
    Neault JF, Benkiran A, Milonga H et al (2001) The effects of anions on the solution structure of Na+, K+ ATPase. J Biomol Struct Dyn 19:95–102PubMedGoogle Scholar
  27. 27.
    Gabibov MM (1978) ATPase activity in neuronal and glial enriched fractions of cerebral cortex in normal conditions and with hyperoxia. Ukr Biokhim Zh 50(3):275–280PubMedGoogle Scholar
  28. 28.
    Sherstneva IIa, Bronovitskaia ZG (1976) ATPase activity of subcellular rat brain fractions following hyperoxia. Ukr Biokhim Zh 48(4):417–420PubMedGoogle Scholar
  29. 29.
    Shaheen AA, Abd El-Fattah A, Gad MZ (1996) Effect of various stressors on the level of lipid peroxide, antioxidants and Na+, K+ ATPase activity in rat brain. Experientia 52:336–339PubMedCrossRefGoogle Scholar
  30. 30.
    Hernández RJ (1982) A serotonin agonist-antagonist reversible effect on Na+, K+ ATPase activity in the developing rat brain. Dev Neurosci 5:326–331PubMedGoogle Scholar
  31. 31.
    Lehotssky J, Kaplan P, Racay P et al (1999) Membrane ion transport systems during oxidative stress in rodent brain: protective effects of stobadine and other antioxidants. Life Sci 65:1951–1958CrossRefGoogle Scholar
  32. 32.
    Sandrini M, Vitale G, Pini LA (2002) Central antinociceptive activity of acetylsalicylic acid is moduled by brain serotonin receptor subtypes. Pharmacology 65:193–197PubMedCrossRefGoogle Scholar
  33. 33.
    Davis FB, Smith TJ, Deziel MR et al (1990) Retinoic acid inhibits calmodulin binding to human erythrocyte membranes and reduces membrane Ca2(+)-adenosine triphosphatase activity. J Clin Invest 85:1999–2003PubMedCrossRefGoogle Scholar
  34. 34.
    Tubaro M, Caballo G, Pensa V et al (1992) Demonstration of the formation of hydroxyl radicals in acute myocardial infarction in man using salicylate as probe. Cardiology 80:246–251PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • David Calderón Guzmán
    • 1
  • Francisca Trujillo Jiménez
    • 2
  • Ernestina Hernández García
    • 2
  • Hugo Juárez Olguín
    • 2
    • 3
  1. 1.Laboratorio de NeuroquímicaInstituto Nacional de Pediatría, (INP)Mexico CityMexico
  2. 2.Laboratorio de FarmacologíaInstituto Nacional de Pediatría, (INP)Mexico CityMexico
  3. 3.Departamento de Farmacología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations