Skip to main content
Log in

Analysis of Plasma Biopterin Levels in Psychiatric Disorders Suggests a Common BH4 Deficit in Schizophrenia and Schizoaffective Disorder

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Tetrahydrobiopterin (BH4) is an essential cofactor for amine neurotransmitter synthesis. BH4 also stimulates and modulates the glutamatergic system, and regulates the synthesis of nitric oxide by nitric oxide synthases. A connection between BH4 deficiencies and psychiatric disorders has been previously reported; major depression and obsessive-compulsive disorder have been found in subjects with a BH4 deficiency disorder and more recently we have observed a robust plasma deficit of biopterin (a measure of BH4), in a large group of schizophrenic patients compared to control subjects. To extend our previous finding in schizophrenia, we analyzed plasma biopterin levels from patients with schizoaffective and bipolar disorders. A significant difference in biopterin was seen among the diagnostic groups (P < 0.0001). Post hoc analyses indicated significant biopterin deficits relative to the normal control group for the schizoaffective group, who had biopterin levels comparable to the schizophrenic group. Bipolar disorder subjects had plasma biopterin levels that were higher that the schizoaffective disorder group and significantly higher than the schizophrenic group. The demonstrated significant biopterin deficit in both schizophrenia and schizoaffective disorder, may suggest an etiological role of a BH4 deficit in these two disorders, via dysregulation of neurotransmitter systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Blau N, Thony B, Cotton RGH et al (2001) Disorders of tetrahydrobiopterin and related biogenic amines. In: The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 1725–1776

  2. Kaufman S (1997) Tetrahydrobiopterin. Basic biochemistry and role in human disease. Johns Hopkins University Press, Baltimore

  3. Hufton SE, Jennings IG, Cotton RG (1995) Structure and function of the aromatic amino acid hydroxylases. Biochem J 311:353–366

    PubMed  CAS  Google Scholar 

  4. Koshimura K, Miwa S, Lee K et al (1990) Enhancement of dopamine release in vivo from the rat striatum by dialytic perfusion of 6R-L-erythro-5,6,7,8-tetrahydrobiopterin. J Neurochem 54:1391–1397

    Article  PubMed  CAS  Google Scholar 

  5. Mataga N, Imamura K, Watanabe Y (1991) 6R-tetrahydrobiopterin perfusion enhances dopamine, serotonin, and glutamate outputs in dialysate from rat striatum and frontal cortex. Brain Res 551:64–71

    Article  PubMed  CAS  Google Scholar 

  6. Koshimura K, Miwa S, Watanabe Y (1994) Dopamine-releasing action of 6R-L-erythro-tetrahydrobiopterin: analysis of its action site using sepiapterin. J Neurochem 63:649–654

    Article  PubMed  CAS  Google Scholar 

  7. Sumi-Ichinose C, Urano F, Kuroda R et al (2001) Catecholamines and serotonin are differently regulated by tetrahydrobiopterin: a study from 6-pyruvoyltetrahydropterin synthase knockout mice. J Biol Chem 276:41150–41160

    Article  PubMed  CAS  Google Scholar 

  8. Watanabe Y, Mataga N, Imamura K et al (1991) Tetrahydrobiopterin and dopamine release. Jpn J Psychiatry Neurol 45:513–514

    PubMed  CAS  Google Scholar 

  9. Snyder SH, Ferris CD (2000) Novel neurotransmitters and their neuropsychiatric relevance. Am J Psychiatry 157:1738–1751

    Article  PubMed  CAS  Google Scholar 

  10. Kiss JP (2000) Role of nitric oxide in the regulation of monoaminergic neurotransmission. Brain Res Bull 52:459–466

    Article  PubMed  CAS  Google Scholar 

  11. Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64:51–68

    Article  PubMed  CAS  Google Scholar 

  12. Schuman EM, Madison DV (1994) Nitric oxide and synaptic function. Annu Rev Neurosci 17:153–183

    Article  PubMed  CAS  Google Scholar 

  13. Segieth J, Getting SJ, Biggs CS (1995) Nitric oxide regulates excitatory amino acid release in a biphasic manner in freely moving rats. Neurosci Lett 200:101–104

    Article  PubMed  CAS  Google Scholar 

  14. Kamisaki Y, Maeda K, Ishimura M et al (1994) No enhancement by nitric oxide of glutamate release from P2 and P3 synaptosomes of rat hippocampus. Brain Res 644:128–134

    Article  PubMed  CAS  Google Scholar 

  15. Garthwaite J, Garthwaite G, Palmer RM (1989) NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur J Pharmacol 172:413–416

    Article  PubMed  CAS  Google Scholar 

  16. Bernstein HG, Heinemann A, Krell D et al (2005) Hypothalamic nitric oxide synthase in affective disorder: focus on the suprachiasmatic nucleus. Cell Mol Biol 51:279–284

    PubMed  CAS  Google Scholar 

  17. Bernstein HG, Bogerts B, Keilhoff G (2005) The many faces of nitric oxide in schizophrenia. Schizophr Res 78:69–86

    PubMed  Google Scholar 

  18. Garbutt JC, Duch DS, Nichol CA (1985) Urinary biopterin and neopterin excretion and pituitary-adrenal activity in psychiatric patients. Psychiatry Res 16:181–187

    Article  PubMed  CAS  Google Scholar 

  19. Hashimoto R, Mizutani M, Ohta T et al (1994) Changes in plasma tetrahydrobiopterin levels of depressives in depressive and remission phases: reconfirmed by measurement with an internal standard. Neuropsychobiol 29:57–60

    CAS  Google Scholar 

  20. Hoekstra R, van den Broek WW, Fekkes D et al (2001) Effect of electroconvulsive therapy on biopterin and large neutral amino acids in severe, medication-resistant depression. Psychiatry Res 103:115–123

    Article  PubMed  CAS  Google Scholar 

  21. Fiege B, Ballhausen D, Kierat L et al (2004) Plasma tetrahydrobiopterin and its pharmacokinetic following oral administration. Mol Genet Metab 81:45–51

    Article  PubMed  CAS  Google Scholar 

  22. Duch DS, Woolf JH, Nichol CA et al (1984) Urinary excretion of biopterin and neopterin in psychiatric disorders. Psychiatry Res 11:83–89

    Article  PubMed  CAS  Google Scholar 

  23. Hashimoto R, Ozaki N, Ohta T et al (1990) The plasma tetrahydrobiopterin levels in patients with affective disorders. Biol Psychiatry 28:526–528

    Article  PubMed  CAS  Google Scholar 

  24. Garbutt JC, van Kammen DP, Levine RA et al (1982) Cerebrospinal fluid hydroxylase cofactor in schizophrenia. Psychiatry Res 6:145–151

    Article  PubMed  CAS  Google Scholar 

  25. Leeming RJ, Blair JA, Melikian V et al (1976) Biopterin derivatives in human body fluids and tissues. J Clin Pathol 29:444–451

    PubMed  CAS  Google Scholar 

  26. Richardson MA, Read LL, Taylor Clelland CL et al (2005) Evidence for a Tetrahydrobiopterin Deficit in Schizophrenia. Neuropsychobiology 52:190–201

    Article  PubMed  CAS  Google Scholar 

  27. Department of Health, Human Services (1991) Protection of human subjects. The common rule. In: DHHS OPRR Reports, Washington, DC

  28. Department of Health Education and Welfare (1979) Protection of human subjects: belmont report; ethical principles and guidelines for the protection of human subjects of research. report of the national commission for the protection of human subjects of biomedical and behavioral research. In: Federal Register 23192

  29. Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62

    PubMed  CAS  Google Scholar 

  30. Overall JE, Gorham DR (1962) The Brief psychiatric rating scale. Psychol Rep 10:799–812

    Article  Google Scholar 

  31. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    CAS  Google Scholar 

  32. Ponzone A, Guardamagna O, Spada M et al (1993) Hyperphenylalaninemia and pterin metabolism in serum and erythrocytes. Clin Chim Acta 216:63–71

    Article  PubMed  CAS  Google Scholar 

  33. Milstien S, Jaffe H, Kowlessur D et al (1996) Purification and cloning of the GTP cyclohydrolase I feedback regulatory protein, GFRP. J Biol Chem 271:19743–19751

    Article  PubMed  CAS  Google Scholar 

  34. Leeming RJ, Hall SK, Surplice IM et al (1990) Relationship between plasma and red cell biopterins in acute and chronic hyperphenylalaninaemia. J Inherited Metab Dis 13:883–887

    Article  PubMed  CAS  Google Scholar 

  35. Leeming RJ, Blair JA, Green A et al (1976) Biopterin derivatives in normal and phenylketonuric patients after oral loads of L-phenylalanine, L-tyrosine, and L-tryptophan. Arch Dis Child 51:771–777

    Article  PubMed  CAS  Google Scholar 

  36. SPSS (2002) SPSS for Windows, Rel. 11.5.0 SPSS, Chicago

  37. Joyce JN (1993) The dopamine hypothesis of schizophrenia: limbic interactions with serotonin and norepinephrine. Psychopharmacology 112:S16–S34

    Article  PubMed  CAS  Google Scholar 

  38. Lieberman JA, Mailman RB, Duncan G et al (1998) Serotonergic basis of antipsychotic drug effects in schizophrenia. Biol Psychiatry 44:1099–1117

    Article  PubMed  CAS  Google Scholar 

  39. Van Kammen DP, Kelley M (1991) Dopamine and norepinephrine activity in schizophrenia. An integrative perspective. Schizophr Res 4:173–191

    Google Scholar 

  40. Diehl DJ, Gershon S (1992) The role of dopamine in mood disorders. Comp Psychiatry 33:115–120

    Article  CAS  Google Scholar 

  41. Risch SC, Nemeroff CB (1992) Neurochemical alterations of serotonergic neuronal systems in depression. J Clin Psychiatry 53:3–7

    PubMed  Google Scholar 

  42. Svensson TH (2000) Brain noradrenaline and the mechanisms of action of antidepressant drugs. Acta Psychiatr Scand 402:18–27

    Article  CAS  Google Scholar 

  43. Frazer A (2000) Norepinephrine involvement in antidepressant action. J Clin Psychiatry 61:25–30

    PubMed  CAS  Google Scholar 

  44. Blau N, Bonafe L, Thony B (2001) Tetrahydrobiopterin deficiencies without hyperphenylalaninemia: diagnosis and genetics of dopa-responsive dystonia and sepiapterin reductase deficiency. Mol Genet Metab 74:172–185

    Article  PubMed  CAS  Google Scholar 

  45. Furukawa Y, Nygaard TG, Gutlich M et al (1999) Striatal biopterin and tyrosine hydroxylase protein reduction in dopa-responsive dystonia. Neurology 53:1032–1041

    PubMed  CAS  Google Scholar 

  46. Furukawa Y, Kapatos G, Haycock JW et al (2002) Brain biopterin and tyrosine hydroxylase in asymptomatic dopa-responsive dystonia. Ann Neurol 51:637–641

    Article  PubMed  CAS  Google Scholar 

  47. Blau N, Barnes I, Dhondt JL (1996) International database of tetrahydrobiopterin deficiencies. J Inherit Metab Dis 19:8–14

    Article  PubMed  CAS  Google Scholar 

  48. Hahn H, Trant MR, Brownstein MJ et al (2001) Neurologic and psychiatric manifestations in a family with a mutation in exon 2 of the guanosine triphosphate-cyclohydrolase gene. Arch Neurol 58:749–755

    Article  PubMed  CAS  Google Scholar 

  49. Van Hove JL, Steyaert J, Matthijs G et al (2006) Expanded motor and psychiatric phenotype in autosomal dominant Segawa syndrome due to GTP cyclohydrolase deficiency. J Neurol Neurosurg Psychiatry 77:18–23

    Article  PubMed  Google Scholar 

  50. Blau N, Dhondt JL (2004) BIODEF: international database of tetrahydrobiopterin deficiencies. www.bh4.org

  51. Bjerkenstedt L, Edman G, Hagenfeldt L et al (1985) Plasma amino acids in relation to cerebrospinal fluid monoamine metabolites in schizophrenic patients and healthy controls. Br J Psychiatry 147:276–282

    Article  PubMed  CAS  Google Scholar 

  52. Lindstrom LH (1985) Low HVA and normal 5HIAA CSF levels in drug-free schizophrenic patients compared to healthy volunteers: correlations to symptomatology and family history. Psychiatry Res 14:265–273

    Article  PubMed  CAS  Google Scholar 

  53. Tuckwell HC, Koziol JA (1993) A meta-analysis of homovanillic acid concentrations in schizophrenia. Int J Neurosci 73:109–114

    PubMed  CAS  Google Scholar 

  54. Potkin SG, Weinberger DR, Linnoila M et al (1983) Low CSF 5-hydroxyindoleacetic acid in schizophrenic patients with enlarged cerebral ventricles. Am J Psychiatry 140:21–25

    PubMed  CAS  Google Scholar 

  55. Sedvall G, Iselius L, Nyback H et al (1984) Genetic studies of CSF monoamine metabolites. In: Usdin E, Åsberg M, Bertilsson L, Sjöquist F (eds) Frontiers in biochemical and pharmacological research in depression. Advances in biochemical psychopharmacology, vol 39. Raven Press, New York, pp 79–85

  56. Sedvall GC, Wode-Helgodt B (1980) Aberrant monoamine metabolite levels in CSF and family history of schizophrenia. Their relationships in schizophrenic patients. Arch Gen Psychiatry 37:1113–1116

    CAS  Google Scholar 

  57. Barker JE, Strangward HM, Brand MP et al (1998) Increased inducible nitric oxide synthase protein but limited nitric oxide formation occurs in astrocytes of the hph-1 (tetrahydrobiopterin deficient) mouse. Brain Res 804:1–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This present investigation was supported by a grant from the NIMH (R01 MH44153), and institutional support from the New York State Office of Mental Health. The authors wish to thank Dr. R Suckow (for measurement of plasma phenylalanine), Laura Panek, David Merrill, and Istvan Sziraki, the administration and staff of the Rockland Psychiatric Center, and the subjects who participated in the protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine L. Taylor Clelland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richardson, M.A., Read, L.L., Reilly, M.A. et al. Analysis of Plasma Biopterin Levels in Psychiatric Disorders Suggests a Common BH4 Deficit in Schizophrenia and Schizoaffective Disorder. Neurochem Res 32, 107–113 (2007). https://doi.org/10.1007/s11064-006-9233-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9233-5

Keywords

Navigation