Skip to main content
Log in

Differential Modulation of 7-Ketocholesterol Toxicity Against PC12 Cells by Calmodulin Antagonists and Ca2+ Channel Blockers

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The present study assessed the influence of intracellular Ca2+ and calmodulin against the neurotoxicity of oxysterol 7-ketocholesterol in relation to the mitochondria-mediated cell death process and oxidative stress in PC12 cells. Calmodulin antagonists calmidazolium and W-7 prevented the 7-ketocholesterol-induced mitochondrial damage, leading to caspase-3 activation and cell death, whereas Ca2+ channel blocker nicardipine, mitochondrial Ca2+ uptake inhibitor ruthenium red, and cell permeable Ca2+ chelator BAPTA-AM did not reduce it. Exposure of PC12 cells to 7-ketocholesterol caused elevation of intracellular Ca2+ levels. Unlike cell injury, calmodulin antagonists, nicardipine, and BAPTA-AM prevented the 7-ketocholesterol-induced elevations of intracellular Ca2+ levels. The results show that the cytotoxicity of 7-ketocholesterol seems to be modulated by calmodulin rather than changes in intracellular Ca2+ levels. Calmodulin antagonists may prevent the cytotoxicity of 7-ketocholesterol by suppressing the mitochondrial permeability transition formation, which is associated with the increased formation of reactive oxygen species and the depletion of GSH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Simonian NA, Coyle JT (1996) Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36:83–106

    Article  PubMed  CAS  Google Scholar 

  2. Keller JN, Hanni KB, Markesbery WR (1999) Oxidized low-density lipoprotein induces neuronal death: implications for calcium, reactive oxygen species, and caspases. J Neurochem 72:2601–2609

    Article  PubMed  CAS  Google Scholar 

  3. Olanow CW, Tatton WG (1999) Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 22:123–144

    Article  PubMed  CAS  Google Scholar 

  4. Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801–808

    Article  PubMed  CAS  Google Scholar 

  5. Morel DW, Hessler JR, Chisolm GM (1983) Low density lipoprotein cytotoxicity induced by free radical peroxidation of lipid. J Lipid Res 24:1070–1076

    PubMed  CAS  Google Scholar 

  6. Colles SM, Irwin KC, Chisolm GM (1996) Roles of multiple oxidized LDL lipids in cellular injury: dominance of 7β-hydroperoxycholesterol. J Lipid Res 37:2018–2028

    PubMed  CAS  Google Scholar 

  7. Lemaire S, Lizard G, Monier S et al (1998) Different patterns of IL-1β secretion, adhesion molecule expression and apoptosis induction in human endothelial cells treated with 7α-, 7β-hydroxycholesterol, or 7-ketocholesterol. FEBS Lett 440:434–439

    Article  PubMed  CAS  Google Scholar 

  8. Nelson TJ, Alkon DL (2005) Oxidation of cholesterol by amyloid precursor protein and β-amyloid peptide. J Biol Chem 280:7377–7387

    Article  PubMed  CAS  Google Scholar 

  9. Sugawa M, Ikeda S, Kushima Y, et al (1997) Oxidized low density lipoprotein caused CNS neuron cell death. Brain Res 27:165–172

    Article  Google Scholar 

  10. Schroeter H, Spencer JP, Rice-Evans C et al (2001) Flavonoids protect neurons from oxidized low-density-lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3. Biochem J 358:547–557

    Article  PubMed  CAS  Google Scholar 

  11. Lizard G, Gueldry S, Sordet O et al (1998) Glutathione is implied in the control of 7-ketocholesterol-induced apoptosis, which is associated with radical oxygen species production. FASEB 12:1651–1663

    CAS  Google Scholar 

  12. Miguet-Alfonsi C, Prunet C, Monier S et al (2002) Analysis of oxidative processes and of myelin figures formation before and after the loss of the mitochondrial transmembrane potential during 7β-hydroxycholesterol and 7-ketocholesterol-induced apoptosis: comparison with various pro-apoptotic chemicals. Biochem Pharmacol 64:527–541

    Article  PubMed  CAS  Google Scholar 

  13. Choi DW (1995) Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci 18:58–60

    Article  PubMed  CAS  Google Scholar 

  14. Fu W, Luo H, Parthasarathy S et al (1998) Catecholamines potentiate amyloid β-peptide neurotoxicity: involvement of oxidative stress, mitochondrial dysfunction, and perturbed calcium homeostasis. Neurobiol Dis 5:229–243

    Article  PubMed  CAS  Google Scholar 

  15. Panini SR, Yang L, Rusinol AE et al (2001) Arachidonate metabolism and the signaling pathway of induction of apoptosis by oxidized LDL/oxysterol. J Lipid Res 42:1678–1686

    PubMed  CAS  Google Scholar 

  16. Berthier A, Lemaire-Ewing S, Prunet C et al (2004) Involvement of a calcium-dependent dephosphorylation of BAD associated with the localization of Trpc-1 within lipid rafts in 7-ketocholesterol-induced THP-1 cell apoptosis. Cell Death Differ 11:897–905

    Article  PubMed  CAS  Google Scholar 

  17. Sugano M, Tsuchida K, Makino N (2002) Nifedipine prevents apoptosis of endothelial cells by oxidized low-density lipoproteins. J Cardiovasc Pharmacol 40:146–152

    Article  PubMed  CAS  Google Scholar 

  18. Negre-Salvayre A, Salvayre R (1992) Protection by Ca2+ channel blockers (nifedipine, diltiazem and verapamil) against the toxicity of oxidized low density lipoprotein to cultured lymphoid cells. Br J Pharmacol 107:738–744

    PubMed  CAS  Google Scholar 

  19. Sevanian A, Shen L, Ursini F (2000) Inhibition of LDL oxidation and oxidized LDL-induced cytotoxicity by dihydropyridine calcium antagonists. Pharm Res 17:999–1006

    Article  PubMed  CAS  Google Scholar 

  20. Cominacini L, Fratta Pasini A, Garbin U et al (2003) Antioxidant activity of different dihydropyridines. Biochem Biophys Res Commun 302:679–684

    Article  PubMed  CAS  Google Scholar 

  21. Hajimohammadreza I, Probert AW, Coughenour LL et al (1995) A specific inhibitor of calcium/calmodulin-dependent protein kinase-II provides neuroprotection against NMDA- and hypoxia/hypoglycemia-induced cell death. J Neurosci 15:4093–4101

    PubMed  CAS  Google Scholar 

  22. Shen HM, Yang CF, Ding WX et al (2001) Superoxide radical-initiated apoptotic signaling pathway in selenite-treated HepG(2) cells: mitochondria serve as the main target. Free Radic Biol Med 30:9–21

    Article  PubMed  CAS  Google Scholar 

  23. Lee CS, Park SY, Ko HH et al (2005) Inhibition of MPP+-induced mitochondrial damage and cell death by trifluoperazine and W-7 in PC12 cells. Neurochem Int 46:169–178

    Article  PubMed  CAS  Google Scholar 

  24. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  25. Oberhammer FA, Pavelka M, Sharma S et al (1992) Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor β1. Proc Natl Acad Sci USA 89:5408–5412

    Article  PubMed  CAS  Google Scholar 

  26. Naganuma T, Murayama T, Nomura Y (1999) Modifications of Ca2+ mobilization and noradrenaline release by S-nitroso-cysteine in PC12 cells. Arch Biochem Biophys 364:133–142

    Article  PubMed  CAS  Google Scholar 

  27. Parys JB, Missiaen L, De Smedt H et al (1993) Loading dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in the clonal cell line A7r5. Implications for the mechanism of quantal Ca2+ release. J Biol Chem 268:25206–25212

    PubMed  CAS  Google Scholar 

  28. van Klaveren RJ, Hoet PHM, Pype JL et al (1997) Increase in γ-glutamyltransferase by glutathione depletion in rat type II pneumocytes. Free Radic Biol Med 22:525–534

    Article  PubMed  Google Scholar 

  29. Crow MT, Mani K, Nam Y-J et al (2004) The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res 95:957–970

    Article  PubMed  CAS  Google Scholar 

  30. Kim R, Emi M, Tanabe K (2006) Role of mitochondria as the gardens of cell death. Cancer Chemother Pharmacol 57:545–553

    Article  PubMed  CAS  Google Scholar 

  31. Hall AG (1999) The role of glutathione in the regulation of apoptosis. Eur J Clin Invest 29:238–245

    Article  PubMed  CAS  Google Scholar 

  32. Yang L, Sinensky MS (2000) 25-Hydroxycholesterol activates a cytochrome c release-mediated caspase cascade. Biochem Biophys Res Commun 278:557–563

    Article  PubMed  CAS  Google Scholar 

  33. Seye CI, Knaapen MW, Daret D et al (2004) 7-Ketocholesterol induces reversible cytochrome c release in smooth muscle cells in absence of mitochondrial swelling. Cardiovasc Res 64:144–153

    Article  PubMed  CAS  Google Scholar 

  34. Leist M, Volbracht C, Fava E et al (1998) 1-Methyl-4-phenylpyridinium induces autocrine excitotoxicity, protease activation, and neuronal apoptosis. Mol Pharmacol 54:789–801

    PubMed  CAS  Google Scholar 

  35. Ermak G, Davies KJ (2002) Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 38:713–721

    Article  PubMed  CAS  Google Scholar 

  36. Hajnóczky G, Davies E, Madesh M (2003) Calcium signaling and apoptosis. Biochem Biophys Res Commun 304:445–454

    Article  PubMed  Google Scholar 

  37. Takano H, Fukushi H, Morishima Y et al (2003) Calmodulin and calmodulin-dependent kinase II mediate neuronal cell death induced by depolarization. Brain Res 962:41–47

    Article  PubMed  CAS  Google Scholar 

  38. Benaim G, Villalobo A (2002) Phosphorylation of calmodulin: functional implications. Eur J Biochem 269:3619–3631

    Article  PubMed  CAS  Google Scholar 

  39. Wright SC, Schellenberger U, Ji L et al (1997) Calmodulin-dependent protein kinase II mediates signal transduction in apoptosis. FASEB J 11:843–849

    PubMed  CAS  Google Scholar 

  40. Fladmark KE, Brustugun OT, Mellgren G et al (2002) Ca2+/calmodulin protein kinase II is required for microcystin-induced apoptosis. J Biol Chem 277:2804–2811

    Article  PubMed  CAS  Google Scholar 

  41. Crabtree GR (1999) Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT. Cell 96:611–614

    Article  PubMed  CAS  Google Scholar 

  42. Wang HG, Pathan N, Ethell IM et al (1999) Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284:339–343

    Article  PubMed  CAS  Google Scholar 

  43. Li G, Liu Y, Olson JE (2002) Calcuim/calmodulin-modulated chloride and taurine conductances in cultured rat astrocytes. Brain Res 925:1–8

    Article  PubMed  CAS  Google Scholar 

  44. Khan SZ, Dyer JL, Michelangeli F (2001) Inhibition of the type 1 inositol 1,4,5-trisphophate-sensitive Ca2+ channel by calmodulin antagonists. Cell Signal 13:57–63

    Article  PubMed  CAS  Google Scholar 

  45. Fleury C, Mignotte B, Vayssiere J-L (2002) Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84:131–141

    Article  PubMed  CAS  Google Scholar 

  46. Constantini PC, Chernyak BC, Petronilli V et al (1996) Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J Biol Chem 271:6746–6751

    Article  Google Scholar 

  47. Broeke RT, Leusink-Muis T, Hilberdink R et al (2004) Specific modulation of calmodulin activity induces a dramatic production of superoxide by alveolar macrophages. Lab Invest 84:29–40

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C.S., Park, W.J., Han, E.S. et al. Differential Modulation of 7-Ketocholesterol Toxicity Against PC12 Cells by Calmodulin Antagonists and Ca2+ Channel Blockers. Neurochem Res 32, 87–98 (2007). https://doi.org/10.1007/s11064-006-9230-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9230-8

Keywords

Navigation