Skip to main content

Advertisement

Log in

Reduced Severity of Experimental Autoimmune Encephalomyelitis in GMF-Deficient Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glia maturation factor (GMF), a highly conserved brain-specific protein, isolated, sequenced and cloned in our laboratory. Overexpression of GMF in astrocytes induces the production and secretion of granulocyte-macrophage-colony stimulating factor (GM-CSF), and subsequent immune activation of microglia, expression of several proinflammatory genes including major histocompatibility complex proteins, IL-1β, and MIP-1β, all associated with the development of experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. Based on GMF’s ability to activate microglia and induce well-established proinflammatory mediators, including GM-CSF, we hypothesize that GMF is involved in the pathogenesis of inflammatory disease EAE. In this present investigation, using GMF-deficient mice, we study the role of GMF and how the lack of GMF affects the EAE disease. Our results show a significant decrease in incidence, delay in onset, and reduced severity of EAE in GMF-deficient mice, and support the hypothesis that GMF plays a major role in the pathogenesis of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GMF:

Glia maturation factor

GM-CSF:

Granulocyte-macrophage-colony stimulating factor

TNF:

Tumor necrosis factor

RANTES:

Regulated upon activation, normal T cell expressed and secreted

MCP-1:

Monocyte chemoattractant protein-1

IP-10:

Interferon-inducible 10-kDa protein

INOS:

Inducible nitric oxide synthase

RT-PCR:

Reverse transcription-polymerase chain reaction

ELISA:

Enzyme-linked immunosorbent assay

MS:

Multiple sclerosis

EAE:

Experimental autoimmune encephalomyelitis

References

  1. Steinman L (2001) Multiple sclerosis: a two-stage disease. Nat Immunol 2:762–764

    Article  PubMed  CAS  Google Scholar 

  2. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285

    Article  PubMed  CAS  Google Scholar 

  3. Martin R, McFarland HF, McFarlin DE (1992) Immunological aspects of demyelinating diseases. Annu Rev Immunol 10:153–187

    Article  PubMed  CAS  Google Scholar 

  4. Steinman L (1996) Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 85:299–302

    Article  PubMed  CAS  Google Scholar 

  5. Tuohy VK (1994) Peptide determinants of myelin proteolipid protein (PLP) in autoimmune demyelinating disease: a review. Neurochem Res 19:935–944

    Article  PubMed  CAS  Google Scholar 

  6. Linington C, Berger T, Perry L, Weerth S, Hinze-Selch D, Zhang Y, Lu HC, Lassmann H, Wekerle H (1993) T cells specific for the myelin oligodendrocyte glycoprotein mediate an unusual autoimmune inflammatory response in the central nervous system. Eur J Immunol 23:1364–1372

    PubMed  CAS  Google Scholar 

  7. Cannella B, Raine CS (1995) The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol 37:424–435

    Article  PubMed  CAS  Google Scholar 

  8. Glabinski AR, Ransohoff RM (1999) Sentries at the gate: chemokines and the blood–brain barrier. J Neurovirol 5:623–634

    PubMed  CAS  Google Scholar 

  9. Iglesias A, Bauer J, Litzenburger T, Schubart A, Linington C (2001) T- and B-cell responses to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis and multiple sclerosis. Glia 36:220–234

    Article  PubMed  CAS  Google Scholar 

  10. Smith KJ, Kapoor R, Felts PA (1999) Demyelination: the role of reactive oxygen and nitrogen species. Brain Pathol 9:69–92

    Article  PubMed  CAS  Google Scholar 

  11. Baldwin AS Jr (2001) Series introduction: the transcription factor NF-kappaB and human disease. J Clin Invest 107:3–6

    Article  PubMed  CAS  Google Scholar 

  12. Lim R, Miller JF, Zaheer A (1989) Purification and characterization of glia maturation factor beta: a growth regulator for neurons and glia. Proc Natl Acad Sci USA 86:3901–3905

    Article  PubMed  CAS  Google Scholar 

  13. Lim R, Zaheer A, Lane WS (1990) Complete amino acid sequence of bovine glia maturation factor beta. Proc Natl Acad Sci USA 87:5233–5237

    Article  PubMed  CAS  Google Scholar 

  14. Kaplan R, Zaheer A, Jaye M, Lim R (1991) Molecular cloning and expression of biologically active human glia maturation factor-beta. J Neurochem 57:483–490

    Article  PubMed  CAS  Google Scholar 

  15. Zaheer A, Fink BD, Lim R (1993) Expression of glia maturation factor beta mRNA and protein in rat organs and cells. J Neurochem 60:914–920

    Article  PubMed  CAS  Google Scholar 

  16. Zaheer A, Mathur SN, Lim R (2002) Overexpression of glia maturation factor in astrocytes leads to immune activation of microglia through secretion of granulocyte-macrophage-colony stimulating factor. Biochem Biophys Res Commun 294:238–244

    Article  PubMed  CAS  Google Scholar 

  17. Lim R, Zaheer A (1996) In vitro enhancement of p38 mitogen-activated protein kinase activity by phosphorylated glia maturation factor. J Biol Chem 271:22953–22956

    Article  PubMed  CAS  Google Scholar 

  18. Zaheer A, Lim R (1998) Overexpression of glia maturation factor (GMF) in PC12 pheochromocytoma cells activates p38 MAP kinase, MAPKAP kinase-2, and tyrosine hydroxylase. Biochem Biophys Res Commun 250:278–282

    Article  PubMed  CAS  Google Scholar 

  19. Lim R, Zaheer A, Yorek MA, Darby CJ, Oberley LW (2000) Activation of nuclear factor-kappaB in C6 rat glioma cells after transfection with glia maturation factor. J Neurochem 74:596–602

    Article  PubMed  CAS  Google Scholar 

  20. Zaheer A, Yang B, Cao X, Lim R (2004) Decreased copper–zinc superoxide dismutase activity and increased resistance to oxidative stress in glia maturation factor-null astrocytes. Neurochem Res 29:1473–1480

    Article  PubMed  CAS  Google Scholar 

  21. Lim R, Zaheer A, Khosravi H, Freeman JH Jr, Halverson HE, Wemmie JA, Yang B (2004) Impaired motor performance and learning in glia maturation factor-knockout mice. Brain Res 1024:225–232

    Article  PubMed  CAS  Google Scholar 

  22. Hilliard B, Samoilova EB, Liu TS, Rostami A, Chen Y (1999) Experimental autoimmune encephalomyelitis in NF-kappa B-deficient mice: roles of NF-kappa B in the activation and differentiation of autoreactive T cells. J Immunol 163:2937–2943

    PubMed  CAS  Google Scholar 

  23. Wang BR, Zaheer A, Lim R (1992) Polyclonal antibody localizes glia maturation factor beta-like immunoreactivity in neurons and glia. Brain Res 591:1–7

    Article  PubMed  CAS  Google Scholar 

  24. Natarajan C, Bright JJ (2002) Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signaling through Janus kinase-STAT pathway in T lymphocytes. J Immunol 168:6506–6513

    PubMed  CAS  Google Scholar 

  25. Bright JJ, Rodriguez M, Sriram S (1999) Differential influence of interleukin-12 in the pathogenesis of autoimmune and virus-induced central nervous system demyelination. J Virol 73:1637–1639

    PubMed  CAS  Google Scholar 

  26. Natarajan C, Bright JJ (2002) Peroxisome proliferator-activated receptor-gamma agonists inhibit experimental allergic encephalomyelitis by blocking IL-12 production, IL-12 signaling and Th1 differentiation. Genes Immun 3:59–70

    Article  PubMed  CAS  Google Scholar 

  27. Zaheer A, Zhong W, Lim R (1995) Expression of mRNAs of multiple growth factors and receptors by neuronal cell lines: detection with RT-PCR. Neurochem Res 20:1457–1463

    Article  PubMed  CAS  Google Scholar 

  28. Zaheer A, Zhong W, Uc EY, Moser DR, Lim R (1995) Expression of mRNAs of multiple growth factors and receptors by astrocytes and glioma cells: detection with reverse transcription-polymerase chain reaction. Cell Mol Neurobiol 15:221–237

    Article  PubMed  CAS  Google Scholar 

  29. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  30. Asai K, Fujita K, Yamamoto M, Hotta T, Morikawa M, Kokubo M, Moriyama A, Kato T (1998) Isolation of novel human cDNA (hGMF-gamma) homologous to glia maturation factor-beta gene. Biochim Biophys Acta 1396:242–244

    PubMed  CAS  Google Scholar 

  31. Tsuiki H, Asai K, Yamamoto M, Fujita K, Inoue Y, Kawai Y, Tada T, Moriyama A, Wada Y, Kato T (2000) Cloning of a rat glia maturation factor-gamma (rGMFG) cDNA and expression of its mRNA and protein in rat organs. J Biochem (Tokyo) 127:517–523

    CAS  Google Scholar 

  32. Nishiwaki A, Asai K, Tada T, Ueda T, Shimada S, Ogura Y, Kato T (2001) Expression of glia maturation factor during retinal development in the rat. Brain Res Mol Brain Res 95:103–109

    Article  PubMed  CAS  Google Scholar 

  33. Inagaki M, Aoyama M, Sobue K, Yamamoto N, Morishima T, Moriyama A, Katsuya H, Asai K (2004) Sensitive immunoassays for human and rat GMFB and GMFG, tissue distribution and age-related changes. Biochim Biophys Acta 1670:208–216

    PubMed  CAS  Google Scholar 

  34. Lim R, Zaheer A (1995) Phorbol ester stimulates rapid intracellular phosphorylation of glia maturation factor. Biochem Biophys Res Commun 211:928–934

    Article  PubMed  CAS  Google Scholar 

  35. Zaheer A, Lim R (1996) In vitro inhibition of MAP kinase (ERK1/ERK2) activity by phosphorylated glia maturation factor (GMF). Biochemistry 35:6283–6288

    Article  PubMed  CAS  Google Scholar 

  36. Lim R, Zaheer A, Kraakevik JA, Darby CJ, Oberley LW (1998) Overexpression of glia maturation factor in C6 cells promotes differentiation and activates superoxide dismutase. Neurochem Res 23:1445–1451

    Article  PubMed  CAS  Google Scholar 

  37. Kaimori JY, Takenaka M, Nakajima H, Hamano T, Horio M, Sugaya T, Ito T, Hori M, Okubo K, Imai E (2003) Induction of glia maturation factor-beta in proximal tubular cells leads to vulnerability to oxidative injury through the p38 pathway and changes in antioxidant enzyme activities. J Biol Chem 278:33519–33527

    Article  PubMed  CAS  Google Scholar 

  38. Baldwin RM, Garratt-Lalonde M, Parolin DA, Krzyzanowski PM, Andrade MA, Lorimer IA (2006) Protection of glioblastoma cells from cisplatin cytotoxicity via protein kinase Ciota-mediated attenuation of p38 MAP kinase signaling. Oncogene 25:2909–2919

    Article  PubMed  CAS  Google Scholar 

  39. Marusic S, Miyashiro JS, Douhan J 3rd, Konz RF, Xuan D, Pelker JW, Ling V, Leonard JP, Jacobs KA (2002) Local delivery of granulocyte macrophage colony-stimulating factor by retrovirally transduced antigen-specific T cells leads to severe, chronic experimental autoimmune encephalomyelitis in mice. Neurosci Lett 332:185–189

    Article  PubMed  CAS  Google Scholar 

  40. McQualter JL, Darwiche R, Ewing C, Onuki M, Kay TW, Hamilton JA, Reid HH, Bernard CC (2001) Granulocyte macrophage colony-stimulating factor: a new putative therapeutic target in multiple sclerosis. J Exp Med 194:873–882

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Houdy Khosravi, Kiwhoon Lee, Coletta Sanchez Warner, Amanda Alexander and Ashna Zaheer for excellent technical assistance. We thank Dr Joseph Francis, Dr Don Bonthius and Dr Satya Mathur for help in preparation of Fig. 2. GMF-deficient mice were produced at the University of Iowa Gene Targeting Core Facility. This work was supported by the Department of Veterans Affairs Merit Review award (to A.Z.) and by the National Institute of Neurological Disorders and Stroke grant NS-47145 (to A.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asgar Zaheer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaheer, A., Zaheer, S., Sahu, S.K. et al. Reduced Severity of Experimental Autoimmune Encephalomyelitis in GMF-Deficient Mice. Neurochem Res 32, 39–47 (2007). https://doi.org/10.1007/s11064-006-9220-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9220-x

Keywords

Navigation