Neurochemical Research

, Volume 32, Issue 4–5, pp 695–706 | Cite as

Alzheimer Disease—No Target for Statin Treatment. A Mini Review

Review Article


Nosologically, Alzheimer disease (AD) is not a single disorder. A minority of around 400 families worldwide can be grouped as hereditary in origin, whereas the majority of all Alzheimer cases (approx. 25 million worldwide) are sporadic in origin. In the pathophysiology of the latter type, a number of susceptibility genes contribute to the disease among which are allelic abnormalities of the apolipoprotein E4 gene pointing to a link between disturbed cholesterol metabolism and sporadic AD. Cholesterol is a main component of membrane composition enriched in microdomains and is functionally linked to the proteolytic processing of amyloid precursor protein (APP). In sporadic AD, a marked diminution of both membrane phospholipids and cholesterol has been found. Evidence has been provided that high plasma cholesterol may protect from AD. In contrast to these well documented abnormalities observed in AD patients, it was assumed that an elevated cholesterol concentration might favour the generation of β-amyloid and, thus, AD. However, a series of in vitro-and in vivo-studies did not provide evidence for the assumption that an enhanced cholesterol concentration increased βA4-production. A harsh reduction of membrane cholesterol only caused a “beneficial” effect of APP metabolism. However, this experimentally induced condition may not be compatible to sporadic AD. The application of statins in sporadic AD did not yield results to assume that this therapeutic strategy may prevent or treat successfully sporadic AD.


Alzheimer disease Membrane Cholesterol Statins Amyloid 


  1. 1.
    Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road of therapeutics. Science 297:353–356PubMedCrossRefGoogle Scholar
  2. 2.
    de Quervain DJF, Poirier R, Wollmer MA, Grimaldi L M.E., Tsolaki M, Streffer JR, Hock C, Nitsch RM, Mohajeri MH, Pappassotiropoulos A (2004) Glucocorticoid-related genetic susceptibility for Alzheimer’s disease. Human Mol Genet 13:47–52CrossRefGoogle Scholar
  3. 3.
    Tanzi RE, Bertram L (2001) New frontiers in Alzheimer’s disease genetics. Neuron 32:181–184PubMedCrossRefGoogle Scholar
  4. 4.
    Davignon J, Gregg RE, Sing CF (1988) Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis 8:1–21PubMedGoogle Scholar
  5. 5.
    Mahley RW, Rall SC Jr (2000) Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genom Hum Genet 1:507–537CrossRefGoogle Scholar
  6. 6.
    Hoshino T, Kamino K, Matsumoto M (2002) Gene dose effect of the APOE-epsilon 4 allele on plasma HDL cholesterol level in patients with Alzheimer’s disease. Neurobiol. Aging 23:41–45PubMedCrossRefGoogle Scholar
  7. 7.
    Mainous AG III, Eschenbach SL, Well BJ, Everett CJ, Gill JM (2005) Fam Med 37:36–42PubMedGoogle Scholar
  8. 8.
    Mielke MM, Zandi PP, Sjogren M, Gustafson D, Ostling S, Steen B, Skoog I (2005) High total cholesterol levels in late life associated with a reduced risk of dementia. Neurology 64:1689–1695PubMedCrossRefGoogle Scholar
  9. 9.
    Dufouil C, Richard F, Fieret N, Dartigues JF, Ritchie K, Tzourio C, Amouyel P, Alferovitch A (2005) APOE genotype, cholesterol level, lipid-lowering treatment, and dementia: the Three-City Study. Neurology 64:1531–1538PubMedCrossRefGoogle Scholar
  10. 10.
    Whitmer RA, Sidney S, Selby J, Johnston SC, Yaffe K (2005) Midlife cardiovascular risk factors and risk of dementia in late life. Neurology 64:277–281PubMedGoogle Scholar
  11. 11.
    Jarvik GP, Wijsman EM, Kukull WA, Schellenberg GD, Yu C, Larson EB (1995) Interactions of apolipoprotein E genotype total cholesterol level, age, and sex in prediction of Alzheimer’s disease: A case–control study. Neurology 45:1092–1096PubMedGoogle Scholar
  12. 12.
    Notkola IL, Sulkava R, Pekkanen J, Erkinjuntti T, Ehnholm C, Kivinen P, Tuomilehto J, Nissinen A (1998) Serum total cholesterol, apolipoprotein E Σ4 allele, and Alzheimer’s disease. Neuroepidemiology 17:14–20PubMedCrossRefGoogle Scholar
  13. 13.
    Kivipelto M, Helkala EL, Laakso MP, Hänninen T., Hallikainen M Alhainen K, Iievenen S, Mannermaa A, Tuomilhto J, Nissinen A, Soininen H (2002) Apolipoprotein E Σ4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease. Ann Intern Med 137:149–155PubMedGoogle Scholar
  14. 14.
    Kivipelto M, Helkala EL, Laakso MP, Hänninen T., Hallikainen M, Alhainen K, Soininen H, Tuomiletho J, Nissien A (2001) Vascular risk factors and Alzheimer’s disease in later life: longitudinal, population based study. Br Med J 322:1447–1451CrossRefGoogle Scholar
  15. 15.
    Refolo LM, Pappolla MA, Malester B, La Francois J, Bryant-Thomas T, Wang R, Tint GS, Sambamurti K, Duff K (2000) Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol Dis 7:321–331PubMedCrossRefGoogle Scholar
  16. 16.
    Refolo LM, Wittenberg IS, Friedrich VL Jr, Robaki NK (1991) The Alzheimer amyloid precursor is associated with the detergent-insoluble cytoskeleton. J Neurosci 11:3888–3897PubMedGoogle Scholar
  17. 17.
    Lee SJ, Liyanage U, Bickel PE, Xia R, Landsbury PT Jr, Kosik KS (1998) A detergent-insoluble membrane compartment contains Aβ in vivo. Nat Med 4:730–734PubMedCrossRefGoogle Scholar
  18. 18.
    Puglielli L, Tanzi RE, Kovacs DM (2003) Alzheimer’s disease: the cholesterol connection. Nat Neurosci 6:345–351PubMedCrossRefGoogle Scholar
  19. 19.
    Joseph J, Shukitt-Hale B, Denisova NA, Martin A, Perry G, Smith MA (2001) Copernicus revisited: amyloid beta in Alzheimer’s disease. Neurobiol Aging 22:131–146PubMedCrossRefGoogle Scholar
  20. 20.
    Michikawa M, Yanagisawa K (1999) Inhibition of cholesterol production but not of nonsterol isoprenoid products induces neuronal cell death. J Neurochem 72:2278–2285PubMedCrossRefGoogle Scholar
  21. 21.
    Vance JE, Hayashi H, Karten B (2005) Cholesterol homeostasis in neurons and glial cells. Semin Cell Dev Biol 16:193–212PubMedCrossRefGoogle Scholar
  22. 22.
    Dietschy JM, Turley SD (2004) Thematic review series: brain lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res 45:1375–1397PubMedCrossRefGoogle Scholar
  23. 23.
    Mauch DH, Nägler J, Schumacher S, Göritz EC, Otto A, Pfrieger FW (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Science 294:1354–1357. (a) Handelmann GE, Boyles JK, Weisgraber KH, Mahley RH, Pitas RE (1992) Effects of apolipoprotein Eβ, very low-density lipoproteins, and cholesterol on the extension of neurites by rabbit dorsal root ganglion neurons in vitro. J Lipid Res 33:1677–1688. (b) Levi O, Lütjohann D, Devir A, von Bergmann K, Hartmann T, Michaelson DM (2005) Regulation of hippocampal cholesterol metabolism by apoE and environmental stimulation. J Neurochem. 95:987–997Google Scholar
  24. 24.
    Jurevics H, Hostettler J, Barrett C, Morell P, Toews AD (2000) Diurnal and dietary-induced changes in cholesterol synthesis correlate with levels of mRNA for HMG-CoA reductase. J Lipid Res 41:1048–1054PubMedGoogle Scholar
  25. 25.
    Kirsch C, Eckert GP, Koudinov AR, Müller W.E. (2003) Brain cholesterol, statins and Alzheimer’s disease. Pharmacopsychiatry 36(Suppl. 2): S113–S119PubMedGoogle Scholar
  26. 26.
    Greeve I, Hermans-Borgmeyer I, Brellinger C, Kasper D, Gomez-Isla T, Behl C, Levkau B, Nitsch RM (2000) The human DIMINUTO/DWARF 1 homolog seladin-1 confers resistance to Alzheimer’s disease-associated neurodegeneration and oxidative stress. J Neurosci 20:7345–7352PubMedGoogle Scholar
  27. 27.
    Pettegrew JW, Klunk WE, Panchalingam K, McClure RJ, Stanley JA (2000) Molecular insights into neurodevelopmental and neurodegenerative diseases. Brain Res Bull 53:455–469PubMedCrossRefGoogle Scholar
  28. 28.
    Hoyer S (2004) Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol 490:115–125PubMedCrossRefGoogle Scholar
  29. 29.
    Lütjohann D., Breuer O, Ahlborg G Nennesmo I, Siden A, Diczfalusy U, Björkhem I. (1996) Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc Natl Acad Sci USA 93:9799–9804PubMedCrossRefGoogle Scholar
  30. 30.
    Björkhem I., Lütjohann D., Diczfalusy U, Stahle L, Ahlborg G, Wahren J (1998) Cholesterol homeostais in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J Lipid Res 39:1594–1600PubMedGoogle Scholar
  31. 31.
    Lund EG, Guileyardo JM, Russell DW (1999) cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci USA 96:7238–7243PubMedCrossRefGoogle Scholar
  32. 32.
    Rupprecht R, Holsboer F (1999) Neuroactive steroids: mechanism of action and neuropsychopharmacological perspectives. Trends Neurosci 22:410–416PubMedCrossRefGoogle Scholar
  33. 33.
    Koudinov AR, Koudinova NV (2001) Essential role for cholesterol in synaptic plasticity and neuronal degeneration. FASEB J 15:1858–1860PubMedGoogle Scholar
  34. 34.
    Igbavboa U, Avdulov NA, Schröder F., Wood WG (1996) Increasing age alters transbilayer fluidity and cholesterol asymmetry in synaptic plasma membranes of mice. J Neurochem 66:1717–1725PubMedCrossRefGoogle Scholar
  35. 35.
    Liscum L, Munn NJ (1999) Intracellular cholesterol transport. Biochim Biophys Acta 1438:19–37PubMedGoogle Scholar
  36. 36.
    Schroeder F, Frolov AA, Murphey EJ, Atshaves BP, Jefferson JR, Pu LX, Wood WG, Foxworth WB, Kier AB (1996) Recent advances in membrane cholesterol domain dynamics and intracellular cholesterol trafficking. Proc Soc Exp Biol Med 213:150–177PubMedGoogle Scholar
  37. 37.
    Parkin ET, Turner AJ, Hooper NM (1999) Amyloid precursor protein, although partially detergent-insoluble in mouse cerebral cortex, behaves as an atypical lipid raft protein. Biochem J 344:23–30PubMedCrossRefGoogle Scholar
  38. 38.
    Simons K, Toomre D, (2000) Lipid rafts and signal transduction. Nature Rev Mol Cell Biol 1:31–39CrossRefGoogle Scholar
  39. 39.
    Ledesma MD, Da Silva JS, Schevchenko A, Wilm M, Doffi CG (2003) Proteomic characterisation of neuronal sphingolipid-cholesterol microdomains: role in plasminogen activation. Brain Res 987:107–116PubMedCrossRefGoogle Scholar
  40. 40.
    Hirata F, Axelrod J (1980) Phospholipid methylation and biological signal transmission. Science 209:1082–1090PubMedCrossRefGoogle Scholar
  41. 41.
    Spector AA, Yorek MA (1985) Membran lipid composition and cellular function. J Lipid Res 26:1015–1035PubMedGoogle Scholar
  42. 42.
    Wu Y, Sun FF, Tong DM (1996) Changes in membrane properties during energy depletion-induced cell injury studied with fluorescence microscopy. Biophys J 71:91–100PubMedCrossRefGoogle Scholar
  43. 43.
    Hoyer S, Frölich L (2006) Brain insulin function and insulin signal transduction in sporadic Alzheimer’s disease. In Sun MK (ed) Research progress in Alzheimer’s disease and dementia. Nova Science, New York (in press)Google Scholar
  44. 44.
    Svennerholm L Boström K, Helander CG, Jungbjer B (1991) Membrane lipids in the aging human brain. J Neurochem 56:2051–2059CrossRefGoogle Scholar
  45. 45.
    Svennerholm L, Boström K, Jungbjer B, Olsson L (1994) Membrane lipids of adult human brain: lipid composition of frontal and temporal lobe in subjects of age 20 to 100 years. J Neurochem 63:1802–1811PubMedCrossRefGoogle Scholar
  46. 46.
    Söderberg M., Edlund C, Kristensson K, Dallner G (1990) Lipid composition of different regions of the human brain during aging. J Neurochem 54:415–423PubMedCrossRefGoogle Scholar
  47. 47.
    Zhang Y, Appelkvist EL, Kristensson K, Dallner G (1996) The lipid composition of different regions of rat brain during development and aging. Neurobiol Aging 17:869–875PubMedCrossRefGoogle Scholar
  48. 48.
    Söderberg M, Edlung C, Kristensson K, Dallner G (1991) Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids 26:412–425CrossRefGoogle Scholar
  49. 49.
    Terracina L, Brunetti M, Avellini L, DeMedio GE, Trovarelli G, Gaiti A (1992) Arachidonic and palmitic acid utilization in aged rat brain areas. Mol Cell Biochem 115:35–42. (a) Changeux JP, Danchin A (1976) Selective stabilisation of developing synapses as a mechanism for the specification of neuronal network. Nature 264:705–712. (b) Lippa AS, Critchett DJ, Ehlert F, Yamamura HI, Enna SJ, Bartus RT (1981) Age-related alterations in neurotransmitter receptors: an electrophysiological and biochemical analysis. Neurobiol. Aging 2:3–8. (c) Baudry M, Arst DS, Lynch G (1981) Increased (3H) glutamate receptor binding in aged rats. Brain Res 223:195–198. (d) Seemann P, Bzowei NH, Guan HC, Bergeron C, Becker LE, Reynolds GP, Bird ED, Riederer P, Jelliinger K, Watanabe W, Tourtellotte WW (1987) Human brain dopamine receptors in children and aging adults. Synapse 1:399–404Google Scholar
  50. 50.
    Hoyer S, Nitsch R, Oesterreich K (1991) Predominant abnormality in cerebral glucose utilization in late-onset dementia of the Alzheimer-type: a cross-sectional comparison against advanced late-onset dementia and incipient early-onset cases. J Neural Transm (PD-Sect) 3:1–14CrossRefGoogle Scholar
  51. 51.
    Mielke R, Herholz K, Grond M, Heiss WD (1994) Clinical deterioration in probable Alzheimer’s disease correlates with progressive metabolic impairment of association areas. Dementia 5:36–41PubMedGoogle Scholar
  52. 52.
    Mielke R, Herholz K, Grond M, Kessler J, Heiss WD (1992) Differences of regional cerebral glucose metabolism between presenile and senile dementia of Alzheimer type. Neurobiol Aging 13:93–98PubMedCrossRefGoogle Scholar
  53. 53.
    Perry EK, Perry RG, Tomlinson BE, Blessed G, Gibson PH, (1980) Coenzyme A-acetylating enzymes in Alzheimer’s disease: possible cholinergic “compartment” of pyruvate dehydrogenase. Neurosci Lett 18:105–110PubMedCrossRefGoogle Scholar
  54. 54.
    Sorbi S, Bird ED, Blass JP (1983) Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann Neurol 13:72–78PubMedCrossRefGoogle Scholar
  55. 55.
    Bigl M, Brückner M.K., Arendt T Bigl V, Eschrich K (1999) Activities of key glycolytic enzymes in the brains of patients with Alzheimer’s disease. J Neural Transm 106:499–511PubMedCrossRefGoogle Scholar
  56. 56.
    Sims NR, Bowen DM, Allen SJ, Smith CCT, Neary D, Thomas DJ, Davison AN (1983) Presynaptic cholinergic dysfunction in patients with dementia. J Neurochem 40:503–509PubMedCrossRefGoogle Scholar
  57. 57.
    Sims NR, Bowen DM, Neary D, Davison AN (1983) Metabolic processes in Alzheimer’s disease: adenine nucleotide content and production of 14C02 from (U14C) glucose in vivo in human neocortex. J Neurochem 41:1329–1335PubMedCrossRefGoogle Scholar
  58. 58.
    Hoyer S (1992) Oxidative energy metabolism in Alzheimer brain. Studies in early-onset and late-onset cases. Mol Chem Neuropathol 16:207–224PubMedCrossRefGoogle Scholar
  59. 59.
    Corton JM, Gillespie JG, Hardie DG (1994) Role of the AMP-activated protein kinase in the cellular stress response. Curr Biol 4:315–324PubMedCrossRefGoogle Scholar
  60. 60.
    Yasojima K, McGeer EG, McGeer PL (2001) 3-hydroxy-3-methylglutaryl-coenzyme A reductase mRNA in Alzheimer and control brain. NeuroReport 12:2935–2938PubMedCrossRefGoogle Scholar
  61. 61.
    Mulder M, Ravid R, Swaab DF, deKloet ER, Haasdijk ED, Julk J, van der Boom J, Havekes LM (1998) Reduced levels of cholesterol, phospholipids, and fatty acids in cerebrospinal fluid of Alzheimer disease patients are not related to apolipoprotein E4. Alzheimer Dis Assoc Disord 12:198–203PubMedCrossRefGoogle Scholar
  62. 62.
    Bogdanovic N, Bretillon L, Lund EG, Diczfalusy U, Lannfelt L, Winblad B, Russel DW, Björkhem I (2001) On the turnover of brain cholesterol in patients with Alzheimer’s disease. Hormonal induction of the cholesterol-catabolic enzyme CYP 46 in glial cells. Neurosci Lett 314:45–48PubMedCrossRefGoogle Scholar
  63. 63.
    Kölsch H, Lütjohann D, Ludwig M, Schulte A, Ptok V, Jessen F, von Bergmann K, Rao ML, Maier W, Heun R (2002) Polymorphism in the cholesterol 24S-hydroxylase gene is associated with Alzheimer’s disease. Mol Psychiatr 7:899–902CrossRefGoogle Scholar
  64. 64.
    Lütjohann D, Papassotiropoulos A, Björkhem I, Locatelli S, Bagli M, Oehring RD, Schlegel U, Jessen F, Rao ML, von Bergmann K, Heun R, (2000) Plasma 24S-hydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients. J Lipid Res 41:195–198PubMedGoogle Scholar
  65. 65.
    Papassotiropoulos A, Lütjohann D., Bagli M, Locatelli S, Jessen F, Rao ML, Maier W, Björkhem I., von Bergmann K, Heun R (2000) Plasma 24S-hydroxycholesterol: a peripheral indicator of neuronal degeneration and potential state marker of Alzheimer’s disease. NeuroReport 11:1959–1962PubMedCrossRefGoogle Scholar
  66. 66.
    Schönknecht P, Lütjohann D, Pantel J, Bardenheuer H, Hartmann T, von Bergmann K, Beyreuther K, Schröder J (2002) Cerebrospinal fluid 24S-hydroxycholesterol is increased in patients with Alzheimer’s disease compared to healthy controls. Neurosci Lett 324:83–85Google Scholar
  67. 67.
    Cooper MF, Webster GR (1970) The differentiation of phospholipase A1 and A2 in rat and human nervous tissues. J Neurochem 17:1543–1554PubMedCrossRefGoogle Scholar
  68. 68.
    Siesjö B.K. (1981) Cell damage in the brain: A speculative synthesis. J Cereb Blood Flow Metab 1:155–185PubMedGoogle Scholar
  69. 69.
    Erecinska M, Silver IA (1989) ATP and brain function. J Cereb Blood Flow Metab 9:2–19PubMedGoogle Scholar
  70. 70.
    Pettegrew JW, Moossy J, Withers G, McKeag D, Panchalingam K (1988) 31P nuclear magnetic resonance study of the brain in Alzheimer’s disease. J Neuropathol Exp Neurol 47:235–248PubMedGoogle Scholar
  71. 71.
    Nitsch RM, Blusztajn JK, Pittas AG, Slack BE, Growdoin JH, Wurtman RJ (1992) Evidence for a membrane defect in Alzheimer disease brain. Proc Natl Acad Sci USA 89:1671–1675PubMedCrossRefGoogle Scholar
  72. 72.
    Söderberg M, Edlund C, Alafuzoff I, Kristensson K, Dallner G (1992) Lipid composition in different regions of the brain in Alzheimer’s disease/senile dementia of Alzheimer’s type. J Neurochem 59:1646–1653PubMedCrossRefGoogle Scholar
  73. 73.
    Svennerholm L, Gottfries CG (1994) Membrane lipids, selectively diminished in Alzheimer brains, suggest synapse loss as a primary event in early-onset form (type I) and demyelination in late-onset (type II). J Neurochem 62:1039–1047PubMedCrossRefGoogle Scholar
  74. 74.
    Abad-Rodriguez J, Ledesma MD, Craessaerts K, Perga S, Medina M, Delacourte A, Dingwall C, de Stooper B, Dotti CG (2004) Neuronal membrane cholesterol loss enhances amyloid peptide generation. J Cell Biol 167:953–960PubMedCrossRefGoogle Scholar
  75. 75.
    Eckert GP, Cairns NJ, Maras A, Gattaz WF, Müller WE (2000) Cholesterol modulates the membrane-disordering effects of beta-amyloid peptides in the hippocampus: specific changes in Alzheimer’s disease. Dement Geriatr Cogn Disord 11:181–186PubMedCrossRefGoogle Scholar
  76. 76.
    Kirsch C, Eckert GP, Mueller WE (2002) Cholesterol attenuates the membrane perturbing properties of β-amyloid peptides. Amyloid 9:149–159PubMedGoogle Scholar
  77. 77.
    Yanagisawa K, Odaka A, Suzuki N, Ihara Y (1995) GM1 ganglioside-bound amyloid β-protein (Aβ): A possible form of preamyloid in Alzheimer’s disease. Nat Med 1:1062–1066PubMedCrossRefGoogle Scholar
  78. 78.
    McLaurin J, Chakrabartty A, (1996) Membrane disruption by Alzheimer β-amyloid peptides mediated through specific binding to either phospholipids or gangliosides. J Biol Chem 271:26482–26489PubMedCrossRefGoogle Scholar
  79. 79.
    McLaurin J Franklin T, Fraser PE, Chakrabartty A (1998) Structural transitions associated with the interaction of Alzheimer β-amyloid peptides with gangliosides. J Biol Chem 273:4506–4515CrossRefGoogle Scholar
  80. 80.
    Yanagisawa K, Ihara Y (1998) GM1 ganglioside-bound amyloid β-protein in Alzheimer’s disease brain. Neurobiol Aging 19:S65–S67PubMedCrossRefGoogle Scholar
  81. 81.
    Kakio A, Nishimoto S, Yanagisawa K, Kozutsumi Y, Matsuzaki K (2001) Cholesterol-dependent formation of GM1 ganglioside-bound amyloid β-protein, an endogenous seed for Alzheimer amyloid. J Biol Chem 276:24985–24990PubMedCrossRefGoogle Scholar
  82. 82.
    Mason RP, Shoemaker WJ, Shajenko L, Chambers TE, Herbette LG (1992) Evidence for changes in the Alzheimer’s disease brain cortical membrane structure mediated by cholesterol. Neurobiol Aging 13:413–419PubMedCrossRefGoogle Scholar
  83. 83.
    Distl R, Meske V, Ohm TG (2001) Tangle-bearing neurons contain more free cholesterol than adjacent tangle-free neurons. Acta Neuropathol 101:547–554PubMedGoogle Scholar
  84. 84.
    Gaudreault SB, Dea D, Poirier J (2004) Increased caveolin-1 expression in Alzheimer’s disease brain. Neurobiol Aging 25:753–759PubMedCrossRefGoogle Scholar
  85. 85.
    Ledesma MD, Abad-Rodriguez J, Galvan C, Biondi E, Navarro P, Delacourte A, Dingwall C, Dotti CG (2003) Raft disorganization leads to reduced plasmin activity in Alzheimer’s disease brains. EMBO Rep 4:1190–1196PubMedCrossRefGoogle Scholar
  86. 86.
    Molander-Melin M, Blennow K, Bogdanovic N, Dellheden B, Mansson JE, Fredman P (2005) Structural membrane alterations in Alzheimer brains found to be associated with regional disease development; increased density of gangliosides GM1 and GM2 and loss of cholesterol in detergent-resistant membrane domains. J Neurochem 92:171–182PubMedCrossRefGoogle Scholar
  87. 87.
    Roher AE, Weiss N Kokjohn TA, Kuo YM, Kalback W, Anthony J, Watson D, Luehrs DC, Sue L, Walker D, Emmerling M, Goux W, Beach T (2002) Increased A beta peptides and reduced cholesterol and myelin proteins characterize white matter degeneration in Alzheimer’s disease. Biochemistry 41:11080–11090PubMedCrossRefGoogle Scholar
  88. 88.
    Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, Troncorso JC, Mattson MP (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci USA 101:2070–2075PubMedCrossRefGoogle Scholar
  89. 89.
    Klein J (2000) Membrane breakdown in acute and chronic neurodegeneration: focus on choline-containing phospholipids. J Neural Transm 107:1027–1063PubMedCrossRefGoogle Scholar
  90. 90.
    Gattaz WF, Maras A, Cairns NJ, Levy R, Förstl H (1995) Decreased phospholipase A2 activity in Alzheimer brains. Biol Psychiatr 37:13–17. (a) Ross BM, Moszczynska A, Erlich J, Kish SJ (1998) Phospholipid-metabolizing enzymes in Alzheimer’s disease: increased lysophospholipid acyltransferase activity and decreased phospholipase A2 activity. J Neurochem 70:786–793Google Scholar
  91. 91.
    Launer LJ, White LR, Petrovitch H, Ross GW, Curb JD (2001) Cholesterol and neuropathologic markers of AD. A population-based autopsy study. Neurology 57:1447–1452PubMedGoogle Scholar
  92. 92.
    Kuo YM, Emmerling MR, Bisgaier CL, Essenburg AD, Lampert HC, Drumm D, Roher AE, (1998) Elevated low-density lipoprotein in Alzheimer’s disease correlates with brain Aβ 1–42 levels. Biochem Biophys Res Commun 252:711–715PubMedCrossRefGoogle Scholar
  93. 93.
    Wolf H, Hensel A, Arendt T, Kivipelto M, Winblad B, Gertz HJ (2004) Serum lipids and hippocampal volume: the link to Alzheimer’s diease? Ann. Neurol 56:745–749Google Scholar
  94. 94.
    Corsini A, Bellosta S, Baetta R, Fumagalli R, Paoletti R, Bernini F (1999) New insights into the pharmacodynamic and pharmacokinetic properties of statins. Pharmacol Ther 84:413–428PubMedCrossRefGoogle Scholar
  95. 95.
    Hamelin BA, Turgeon J (1998) Hydrophilicity/lipophilicity: relevance for the pharmacology and clinical effects of HMG-CoA reductase inhibitors. Trends Pharmacol Sci 19:26–37PubMedCrossRefGoogle Scholar
  96. 96.
    Johnson-Anuna LN, Eckert GP, Keller JH, Igbavboa U, Franke C, Fechner T, Schubert-Zsilavecz M, Karas M, Müller W.E., Wood WG (2005) Chronic administration of statins alters multiple gene expression patterns in mouse cerebral cortex. J Pharmacol Exp Ther 312:786–793PubMedCrossRefGoogle Scholar
  97. 97.
    Kirsch C, Eckert GP, Mueller WE (2003) Statin effects on cholesterol micro-domains in brain plasma membranes. Biochem Pharmacol 65:843–856PubMedCrossRefGoogle Scholar
  98. 98.
    Eckert GP, Kirsch C, Mueller WE (2001) Differential effects of lovastatin treatment on brain cholesterol levels in normal and ApoE-deficient mice. NeuroReport 12:883–887PubMedCrossRefGoogle Scholar
  99. 99.
    Papahadjopoulos D, Cowden M, Kimelberg H (1973) Role of cholesterol in membranes. Effects on phospholipids-protein interaction, membrane permeability and enzyme activity. Biochim Biophys Acta 330:8–26PubMedCrossRefGoogle Scholar
  100. 100.
    Farias RN, Bloj B, Morero RD, Sineriz F, Trucco RE (1975) Regulation of allosteric membrane-bound enzymes through changes in membrane lipid composition. Biochim Biophys Acta 415:231–251PubMedGoogle Scholar
  101. 101.
    Meske V, Albert F, Richter D, Schwarze J, Ohm TG (2003) Blockade of HMG-CoA reductase activity causes changes in microtubule-stabilizing protein tau via suppression of geranylgeranylphosphate formation: implications for Alzheimer’s disease. Eur J Neurosci 17:93–102PubMedCrossRefGoogle Scholar
  102. 102.
    Fan QW, Yu W, Senda T, Yanagisawa J, Michikawa M (2001) Cholesterol-dependent modulation of tau phosphorylation in cultured neurons. J Neurochem 76:391–400PubMedCrossRefGoogle Scholar
  103. 103.
    Fan QW, Yu W, Gong JS, Zou K, Sawamura N, Senda T, Yanagisawa K, Michikawa M (2002) Cholesterol-dependent modulation of dendrite outgrowth and microtubule stability in cultured neurons. J Neurochem 80:178–190PubMedCrossRefGoogle Scholar
  104. 104.
    Kilsdonk EPC, Yancey PG, Stoudt WG, Bangerter FW, Johnson WJ, Phillips MC, Rothblat GJ (1995) Cellular cholesterol efflux mediated by cyclodextrins. J Biol Chem 270:17250–17256PubMedCrossRefGoogle Scholar
  105. 105.
    Neufeld EB, Cooney AM,Pitha J, Dawidowicz EA, Dwyer NK, Pentchev PG, Blanchette-Mackie EJ (1996) Intracellular trafficking of cholesterol monitored with a cyclodextrin. J Biol Chem 271:21604–21613PubMedCrossRefGoogle Scholar
  106. 106.
    Kojro E, Gimpl G, Lammich S, März W, Fahrenholz F (2001) Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the α-secretase ADAM 10. Proc Natl Acad Sci USA 98:5815–5820PubMedCrossRefGoogle Scholar
  107. 107.
    Bodovitz S, Klein WL (1996) Cholesterol modulates α-secretase cleavage of amyloid precursor protein. J Biol Chem 271:4436–4440PubMedCrossRefGoogle Scholar
  108. 108.
    Simons M, Keller P, de Strooper B, Beyreuther K, Dotti CG, Simons K (1998) Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. Proc Natl Acad Sci USA 95:6460–6464PubMedCrossRefGoogle Scholar
  109. 109.
    Frears ER, Stephens DJ, Walters CE, Davies H, Austen BM (1999) The role of cholesterol in the biosynthesis of beta-amyloid. NeuroReport 10:1699–1705. (a) Hao M, Mukherjee S, Maxfield FR (2001) Cholesterol depletion induces large scale domain segregation in living cell membranes. Proc Natl Acad Sci USA 98:13072–13077Google Scholar
  110. 110.
    Eckert GP, Wood WG, Müller WE (2005) Statins: drugs for Alzheimer’s disease? J Neural Transm 112:1057–1071PubMedCrossRefGoogle Scholar
  111. 111.
    Fassbender K, Simons M, Bergmann C, Stroick M, Lütjohann D., Keller P, Runz H, Kühl S, Bertsch T, von Bergmann K, Hennerici M, Beyreuther K, Hartmann T (2001) Simvastatin strongly reduces levels of Alzheimer’s disease β-amyloid peptides Aβ42 and Aβ40 in vitro and in vivo. Proc Natl Acad Sci USA 98:5856–5861PubMedCrossRefGoogle Scholar
  112. 112.
    Wolozin B, Kellman W, Ruosseau P, Celesia GG, Siegel G (2000) Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Arch Neurol 57:1439–1443PubMedCrossRefGoogle Scholar
  113. 113.
    Jick H, Zornberg GL, Jick SS, Seshradi S, Drachman DA (2000) Statins in the risk of dementia. Lancet 350:1627–1631CrossRefGoogle Scholar
  114. 114.
    Hajjar I, Schumpert J, Hirth V, Wieland D, Eleazer GP (2002) The impact of the use of statins on the prevalence of dementia and the progression of cognitive impairment. J Gerontol 57A: M414-M418Google Scholar
  115. 115.
    Simons M, Schwärzler F., Lütjohann D., von Bergmann K, Beyreuther K, Dichgans J, Wormstall H, Hartmann T, Schulz JB (2002) Treatment with simvastatin in normocholesterolemic patients with Alzheimer’s disease: A26-week randomized, placebo-controlled, double-blind trial. Ann Neurol 52:346–350PubMedCrossRefGoogle Scholar
  116. 116.
    Sjögren M, Gustafsson K, Syversen S, Olsson A, Edman A, Davidsson P, WAllin A, Blennow K (2003) Treatment with simvastatin in patients with Alzheimer’s disease lowers both α- and β-cleaved amyloid precursor protein. Dement Geriatr Cogn Disord 16:25–30PubMedCrossRefGoogle Scholar
  117. 117.
    Hoglund K, Thelen KM, Syversen S, Sjogren M, von Bergmann K, Wallin A, Vanmechelen E, Vanderstichele H, Lütjohann D, Blennow K (2005) The effect of simvastatin treatment on the amyloid precursor protein and brain cholesterol metabolism in patients with Alzheimer’s disease. Dement Geriatr Cogn Dis 19:256–265CrossRefGoogle Scholar
  118. 118.
    Sparks DL, Sabbagh MN, Connor DJ, Lopez K, Launer LJ, Browne P, Wasser D, Johnson-Traver S, Lochhead J, Ziolwolski C (2005) Atorvastatin for the treatment of mild to moderate Alzheimer disease. Preliminary results. Arch Neurol 62:753–757PubMedCrossRefGoogle Scholar
  119. 119.
    Kivipelto M, Solomon A, Winblad B (2005) Statin therapy in Alzheimer’s disease. Neurol Lancet 4:521–522CrossRefGoogle Scholar
  120. 120.
    Wolozin B (2004) Cholesterol, statins and dementia. Curr Opin Lipidol 15:667–672PubMedCrossRefGoogle Scholar
  121. 121.
    Hartmann T (2005) Cholesterol and Alzheimer’ disease: statins, cholesterol depletion in APP processing and Abeta generation. Subcell Biochem 38:365–380CrossRefGoogle Scholar
  122. 122.
    Suribhatla S, Dennis MS, Potter JF (2005) A study of statin use in the prevention of cognitive impairment of vascular origin in the UK. J Neurol Sci 229–230:147–150PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of PathologyUniversity of HeidelbergHeidelbergGermany
  2. 2.Department of Clinical Neurochemistry, Psychiatric ClinicUniversity of WürzburgWürzburgGermany

Personalised recommendations