Neurochemical Research

, Volume 31, Issue 8, pp 1003–1009 | Cite as

Hypoxia-induced Cell Death and Activation of Pro- and Anti-apoptotic Proteins in Developing Chick Optic Lobe

  • Marina Vacotto
  • Dante Paz
  • Sara Fiszer de Plazas
Original Paper


Exposure of the CNS to hypoxia is associated with cell death. Our aim was to establish a temporal correlation between cellular and molecular alterations induced by an acute hypoxia evaluated at different post-hypoxia (p-h) times and at two stages of chick optic lobe development: embryonic days (ED) 12 and 18. TUNEL assays at ED12 disclosed a significant increase (300%) in pyknotic cells at 6 h p-h, while at ED18 no morphological changes were observed in hypoxic versus controls. At ED12 there was a significant increase (48%) in Bcl-2 levels at the end of the hypoxic treatment, followed by a significant increase of active caspase-9 (49%) and active caspase-3 (58%) at 30 and 60 min p-h, respectively, while at ED18 no significant changes were observed. These findings indicate that prenatal hypoxia produces an equilibrated imbalance in both pro- and anti-apoptotic proteins that culminates in a process of cell death, present at earlier stages of development.


Hypoxia Apoptosis Caspase-3 Programmed cell death Chick optic lobe CNS development 



embryonic day









This work was supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad de Buenos Aires. Authors thank, Lic. Valentina Sorzzoni, Dr. Silvia Trejo and Alba Mitridate de Novara for histological technical assistance and Damián Vacotto for assistance with illustrations.


  1. 1.
    Oppenheim RW (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14:453–501PubMedCrossRefGoogle Scholar
  2. 2.
    Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jaconson MD (1993) Programmed cell death and the control of cell survival: lesson from the nervous system. Science 262:695–700PubMedCrossRefGoogle Scholar
  3. 3.
    Narayanan V (1997) Apoptosis in development and disease of the nervous system: 1. Naturally occurring cell death in the developing nervous system. Pediatr Neurol 16:9–13PubMedCrossRefGoogle Scholar
  4. 4.
    Kuan CY, Roth KA, Flavell RA, Rakic P (2000) Mechanisms of programmed cell death in the developing brain. Trends Neuorosci 23:291–297CrossRefGoogle Scholar
  5. 5.
    Korsmeyer SJ (1999) BCL-2 gene family and the regulation of programmed cell death. Cancer Res 59:S1693–S1700Google Scholar
  6. 6.
    Abedin N, Ashraf Q, Prakash Mishra O, Delivoria-Papadopoulos M (2005) Effect of hypoxia on the expression of pro- and anti-apoptotic proteins in neuronal nuclei of the guinea pig fetus during gestation. Brain Res Dev Brain Res 156:32–37PubMedCrossRefGoogle Scholar
  7. 7.
    Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132PubMedCrossRefGoogle Scholar
  8. 8.
    Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316PubMedCrossRefGoogle Scholar
  9. 9.
    Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahamad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489PubMedCrossRefGoogle Scholar
  10. 10.
    Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H, Su MS, Rakic O, Flavell RA (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94:325–337PubMedCrossRefGoogle Scholar
  11. 11.
    Bossenmeyer-Pourie C, Daval JL (1998) Prevention from hypoxia-induced apoptosis by pre-conditioning: a mechanistic approach in cultured neurons from fetal rat forebrain. Brain Res Mol Brain Res 58:237–239PubMedCrossRefGoogle Scholar
  12. 12.
    Cao G, Minami M, Pei W, Yan C, Chen D, O’Horo C, Graham SH, Chen J (2001) Intracellular Bax translocation after transient cerebral ischemia: implications for a role of the mitochondrial apoptotic signaling pathway in ischemic neuronal death. J Cereb Blood Flow Metab 21:321–333PubMedCrossRefGoogle Scholar
  13. 13.
    Khurana P, Ashraf QM, Mishra OP, Delivoria-Papadoupoulos M (2002) Effect of hypoxia on caspase-3, -8, and -9 activity and expression in the cerebral cortex of newborn piglets. Neurochem Res 27:931–938PubMedCrossRefGoogle Scholar
  14. 14.
    Zhu C, Wang X, Hagberg H, Blomgren K (2000) Correlation between caspase-3 activation and three different markers of DNA damage in neonatal cerebral hypoxia-ischemia. J Neurochem 75:819–829PubMedCrossRefGoogle Scholar
  15. 15.
    Hu BR, Liu CL, Ouyang Y, Blomgren K, Siesjö B (2000) Involvement of caspase-3 in cell death after hypoxemia-ischemia declines during brain maturation. J Cereb Blood Flow Metab 20:1294–1300PubMedCrossRefGoogle Scholar
  16. 16.
    Kelly FJ (1993) Free radical disorders of preterm infants. Br Med Bull 49:668–678PubMedGoogle Scholar
  17. 17.
    Vacotto M, Rodrígez Gil DJ, Mitridate de Novara A, Fiszer de Plazas S (2003) Differential and irreversible CNS ontogenic reduction in maximal MK-801 binding site number in the NMDA receptor after acute hypoxic hypoxia. Brain Res 976:202–208PubMedCrossRefGoogle Scholar
  18. 18.
    Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501PubMedCrossRefGoogle Scholar
  19. 19.
    Lowry OH, Rosebrough NJ, Farr AL, Randall PJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  20. 20.
    Rego AC, Santos MS, Oliveira CR (1996) Oxidative stress, hypoxia, and ischemia-like conditions increase the release of endogenous amino acids by distinct mechanisms in cultured retinal cells. J Neurochem 66:2506–2516PubMedCrossRefGoogle Scholar
  21. 21.
    Saransaari P, Oja SS (1998) Release of endogenous glutamate, aspartate, GABA, and taurine from hippocampal slices from adult and developing mice under cell-damaging conditions. Neurochem Res 23:563–570PubMedCrossRefGoogle Scholar
  22. 22.
    Dirnagal U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic strke: an integrated view. Trends Neurosci 22:391–397CrossRefGoogle Scholar
  23. 23.
    Walton M, Sirimanne E, Reutelingsperger C, Williams C, Gluckman P, Dragunow M (1997) Annexin V labels apoptotic neurons following hypoxia-ischemia. NeuroReport 8:3871–3875PubMedCrossRefGoogle Scholar
  24. 24.
    Fukuda T, Wang H, Nakanishi H, Yamamoto K, Kosaka T (1999) Novel non-apoptotic morphological changes in neurons of the mouse hippocampus following transient hypoxic-ischemia. Neurosci Res 33:49–55PubMedCrossRefGoogle Scholar
  25. 25.
    Johnston MV (1998) Selective vulnerability in the neonatal brain. Ann Neurol 44:155–156PubMedCrossRefGoogle Scholar
  26. 26.
    Johnston MV, Nakajima W, Hagberg H (2002) Mechanisms of hypoxic neurodegeneration in the developing brain. Neuroscientist 8:212–220PubMedGoogle Scholar
  27. 27.
    Vannucci SJ, Harberg H (2004) Hypoxia-ischemia in the immature brain. J Exp Biol 207:3149–3154PubMedCrossRefGoogle Scholar
  28. 28.
    Baumann R, Haller EA, Schoning U, Weber M (1986) Hypoxic incubation leads to concerted changes of carbonic anhydrase activity and 2.3 DPG concentration of chick embryo red cells. Dev Biol 116:548–551PubMedCrossRefGoogle Scholar
  29. 29.
    Million D, Zillner P, Baumann R (1991) Oxygen pressure-dependent control of carbonic anhydrase synthesis in chick embryonic erythrocytes. Am J Physiol 261:1188–1196Google Scholar
  30. 30.
    Graham SH, Chen J (2001) Programmed cell death in cerebral ischemia. J Cereb Blood Flow Metab 21:99–109PubMedCrossRefGoogle Scholar
  31. 31.
    Chen Y, Ginis I, Hallenbeck JM (2001) The protective effect of ceramide in immature rat brain hypoxia-ischemia involves up-regulation of bcl-2 and reduction of TUNEL-positive cells. J Cereb Blood Flow Metab 21:34–40PubMedCrossRefGoogle Scholar
  32. 32.
    Kaufmann JA, Perez M, Zhang W, Bickford PC, Holmes DB, Taglialatela G (2003) Free radical-dependent nuclear localization of Bcl-2 in the central nervous system of aged rats is not associated with Bcl-2-mediated protection from apoptosis. J Neurochem 81:981–994CrossRefGoogle Scholar
  33. 33.
    Kelly S, Zhao H, Sun GH, Cheng D, Qiao Y, Luo J, Martin K, Steinberg GK, Harrison SD, Yenari MA (2004) Glycogen synthase kinase 3β inhibitor Chir025 reduces neuronal death resulting from oxygen-glucose deprivation, glutamate excitotoxicity, and cerebral ischemia. Exp Neurol 188:378–386PubMedCrossRefGoogle Scholar
  34. 34.
    Wu C, Fujihara H, Yao J, Qi S, Li H, Shimoji K, Baba H (2003) Different expression patterns of Bcl-2, Bcl-xl, and Bax proteins after sublethal forebrain ischemia in C57Black/Crj6 mouse striatum. Stroke 34:1803–1808PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Marina Vacotto
    • 1
  • Dante Paz
    • 2
  • Sara Fiszer de Plazas
    • 1
  1. 1.Facultad de MedicinaInstituto de Biología Celular y Neurociencias, Prof. E. De Robertis, Universidad de Buenos Aires1121 Buenos AiresArgentina
  2. 2.Facultad de Ciencias Exactas y Naturales Departamento de Biodiversidad y Biología ExperimentalUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations