Skip to main content

Advertisement

Log in

Ionized Calcium-binding Adapter Molecule 1 Immunoreactive Cells Change in the Gerbil Hippocampal CA1 Region after Ischemia/Reperfusion

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Ionized calcium-binding adapter molecule 1 (iba-1) is specifically expressed in microglia and plays an important role in the regulation of the function of microglia. We observed chronological changes of iba-1-immunoreactive cells and iba-1 level in the gerbil hippocampal CA1 region after transient ischemia. Transient forebrain ischemia in gerbils was induced by the occlusion of bilateral common carotid arteries for 5 min. Immunohistochemical and Western blot analysis of iba-1 were performed in the gerbil ischemic hippocampus. In the sham-operated group, iba-1-immunoreactive cells were detected in the CA1 region. Thirty minutes after ischemia/reperfusion, iba-1 immunoreactivity significantly increased, and its immunoreactive cells were well ramified. Three hours after ischemia/reperfusion, iba-1 immunoreactivity and level decreased, and thereafter they increased again with time after ischemia/reperfusion. Three days after ischemia/reperfusion, iba-1-immunoreactive cells had well-ramified processes, which projected to the stratum pyramidale of the CA1 region. Seven days after ischemia/reperfusion, iba-1 immunoreactivity and level were highest in the CA1 region, whereas they significantly decreased in the CA1 region 10 days after ischemia/reperfusion. Iba-1-immunoreactive cells in the ischemic CA1 region were co-localized with OX-42, a microglia marker. In brief, iba-1-immunoreactive cells change morphologically and iba-1 immunoreactivity alters in the CA1 region with time after ischemia/reperfusion. These may be associated with the delayed neuronal death of CA1 pyramidal cells in the gerbil ischemic hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kirino T, Sano K (1984) Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol (Berl) 62:201–208

    Article  CAS  Google Scholar 

  2. Kondo Y, Kondo F, Asanuma M, Tanaka K, Ogawa N (2000) Protective effect of oren-gedoku-to against induction of neuronal death by transient cerebral ischemia in the C57BL/6 mouse. Neurochem Res 25:205–209

    Article  PubMed  CAS  Google Scholar 

  3. Candelario-Jalil E, Mhadu NH, Al-Dalain SM, Martinez G, Leon OS (2001) Time course of oxidative damage in different brain regions following transient cerebral ischemia in gerbils. Neurosci Res 41:233–241

    Article  PubMed  CAS  Google Scholar 

  4. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69

    Article  PubMed  CAS  Google Scholar 

  5. Hwang IK, Yoo KY, Kim DS, et al (2004) Expression and changes of galanin in neurons and microglia in the hippocampus after transient forebrain ischemia in gerbils. Brain Res 1023:193–199

    Article  PubMed  CAS  Google Scholar 

  6. Hwang IK, Eum WS, Yoo KY, et al (2005) Copper chaperone for Cu, Zn-SOD supplement potentiates the Cu, Zn-SOD function of neuroprotective effects against ischemic neuronal damage in the gerbil hippocampus. Free Radic Biol Med 39:392–402

    Article  PubMed  CAS  Google Scholar 

  7. Abraham H, Losonczy A, Czeh G, Lazar G (2001) Rapid activation of microglial cells by hypoxia, kainic acid, and potassium ions in slice preparations of the rat hippocampus. Brain Res 906:115–126

    Article  PubMed  CAS  Google Scholar 

  8. Kostulas N, Li HL, Xiao BG, Huang YM, Kostulas V, Link H (2002). Dendritic cells are present in ischemic brain after permanent middle cerebral artery occlusion in the rat. Stroke 33:1129–1134

    Article  PubMed  Google Scholar 

  9. Morino T, Ogata T, Horiuchi H, et al (2003) Delayed neuronal damage related to microglia proliferation after mild spinal cord compression injury. Neurosci Res 46:309–318

    Article  PubMed  CAS  Google Scholar 

  10. Hermann DM, Kilic E, Kugler S, Isenmann S, Bahr M (2001) Adenovirus-mediated glial cell line-derived neurotrophic factor (GDNF) expression protects against subsequent cortical cold injury in rats. Neurobiol Dis 8:964–973

    Article  PubMed  CAS  Google Scholar 

  11. Laurenzi MA, Arcuri C, Rossi R, Marconi P, Bocchini V (2001) Effects of microenvironment on morphology and function of the microglial cellline BV-2. Neurochem Res 26:1209–1216

    Article  PubMed  CAS  Google Scholar 

  12. Hashimoto M, Nitta A, Fukumitsu H, Nomoto H, Shen L, Furukawa S (2005) Involvement of glial cell line-derived neurotrophic factor in activation processes of rodent macrophages. J Neurosci Res 79:476–487

    Article  PubMed  CAS  Google Scholar 

  13. Lu YZ, Lin CH, Cheng FC, Hsueh CM (2005) Molecular mechanisms responsible for microglia-derived protection of Sprague–Dawley rat brain cells during in vitro ischemia. Neurosci Lett 373:159–164

    Article  PubMed  CAS  Google Scholar 

  14. Meda L, Cassatella MA, Szendrei GI, et al (1995) Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 374:647–650

    Article  PubMed  CAS  Google Scholar 

  15. Brown DR, Schmidt B, Kretzschmar HA (1996) Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature 380:345–347

    Article  PubMed  CAS  Google Scholar 

  16. Barger SW, Harmon AD (1997) Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature 388:878–881

    Article  PubMed  CAS  Google Scholar 

  17. McDonald DR, Brunden KR, Landreth GE (1997) Amyloid fibrils activate tyrosine kinase-dependent signaling and superoxide production in microglia. J Neurosci 17:2284–2294

    PubMed  CAS  Google Scholar 

  18. Kato H, Tanaka S, Oikawa T, Koike T, Takahashi A, Itoyama Y (2000) Expression of microglial response factor-1 in microglia and macrophages following cerebral ischemia in the rat. Brain Res 882:206–211

    Article  PubMed  CAS  Google Scholar 

  19. Postler E, Rimner A, Beschorner R, Schluesener HJ, Meyermann R (2000) Allograft-inflammatory-factor-1 is upregulated in microglial cells in human cerebral infarctions. J Neuroimmunol 104:85–91

    Article  PubMed  CAS  Google Scholar 

  20. Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S (1996) A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun 224:855–862

    Article  PubMed  CAS  Google Scholar 

  21. Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localization of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 57:1–9

    Article  PubMed  CAS  Google Scholar 

  22. Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y (2001) Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke 32:1208–1215

    PubMed  CAS  Google Scholar 

  23. Hirasawa T, Ohsawa K, Imai Y, et al (2005) Visualization of microglia in living tissues using Iba1-EGFP transgenic mice. J Neurosci Res 81:357–362

    Article  PubMed  CAS  Google Scholar 

  24. Thomas WE (1992) Brain macrophages: evaluation of microglia and their functions. Brain Res Rev 17:61–74

    Article  PubMed  CAS  Google Scholar 

  25. Zhang N, Komine-Kobayashi M, Tanaka R, Liu M, Mizuno Y, Urabe T (2005) Edaravone reduces early accumulation of oxidative products and sequential inflammatory responses after transient focal ischemia in mice brain. Stroke 36:2220–2225

    Article  PubMed  CAS  Google Scholar 

  26. Imai H, Harland J, McCulloch J, Graham DI, Brown SM, Macrae IM (2002) Specific expression of the cell cycle regulation proteins, GADD34 and PCNA, in the peri-infarct zone after focal cerebral ischaemia in the rat. Eur J Neurosci 15:1929–1936

    Article  PubMed  CAS  Google Scholar 

  27. Tanaka R, Komine-Kobayashi M, Mochizuki H, et al (2003) Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia. Neuroscience 117:531–539

    Article  PubMed  CAS  Google Scholar 

  28. Komine Kobayashi M, Chou N, Mochizuki H, Nakao A, Mizuno Y, Urabe T (2004) Dual role of Fcgamma receptor in transient focal cerebral ischemia in mice. Stroke 35:958–963

    Article  PubMed  CAS  Google Scholar 

  29. Schilling M, Besselmann M, Muller M, Strecker JK, Ringelstein EB, Kiefer R (2005) Predominant phagocytic activity of resident microglia over hematogenous macrophages following transient focal cerebral ischemia: an investigation using green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 196:290–297

    Article  PubMed  CAS  Google Scholar 

  30. Wells JE, Biernaskie J, Szymanska A, Larsen PH, Yong VW, Corbett D (2005) Matrix metalloproteinase (MMP)-12 expression has a negative impact on sensorimotor function following intracerebral haemorrhage in mice. Eur J Neurosci 21:187–196

    Article  PubMed  Google Scholar 

  31. Mittelbronn M, Dietz K, Schluesener HJ, Meyermann R (2001) Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol (Berl) 101:249–255

    CAS  Google Scholar 

  32. Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Rev 20:269–287

    Article  PubMed  CAS  Google Scholar 

  33. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Seok Han, Mr. Seung Uk Lee and Ms. Hyun Sook Kim for technical help in this study. This work was supported by the MRC program of MOST/KOSEF (R13-2005-022-01002-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moo Ho Won.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, I.K., Yoo, KY., Kim, D.W. et al. Ionized Calcium-binding Adapter Molecule 1 Immunoreactive Cells Change in the Gerbil Hippocampal CA1 Region after Ischemia/Reperfusion. Neurochem Res 31, 957–965 (2006). https://doi.org/10.1007/s11064-006-9101-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9101-3

Keywords

Navigation