Skip to main content

Advertisement

Log in

Exogenous Pleiotrophin Applied to Lesioned Nerve Impairs Muscle Reinnervation

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Pleiotrophin (PTN) is a heparin-binding growth factor involved in nerve regeneration after peripheral nerve injury. After crush injury, PTN is found in distal nerve segments in several non-neural cell types, including Schwann cells, macrophages, and endothelial cells, but not in axons. To further clarify the role for PTN in nerve regeneration, we investigated the effects of PTN applied to lesioned peripheral nerve in vivo. PTN in a dose of 1 mg/kg impaired muscle reinnervation. Thus, gastrocnemius muscle failed to recover its contractile properties as assessed by in situ maximal isometric tetanic force. PTN also decreased non-neural cell densities and delayed macrophage recruitment in the distal crushed nerve. These results are discussed in the light of recent evidence that PTN is a multifunctional polypeptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rauvala H (1989) An 18-kd heparin-binding protein of developing brain that is distinct from fibroblast growth factors. Embo J 8:2933–2941

    PubMed  CAS  Google Scholar 

  2. Courty J, Dauchel MC, Caruelle D, Perderiset M, Barritault D (1991) Mitogenic properties of a new endothelial cell growth factor related to pleiotrophin. Biochem Biophys Res Commun 180:145–151

    Article  PubMed  CAS  Google Scholar 

  3. Li YS, Milner PG, Chauhan AK, Watson MA, Hoffman RM, Kodner CM, Milbrandt J, Deuel TF (1990) Cloning and expression of a developmentally regulated protein that induces mitogenic and neurite outgrowth activity. Science 250:1690–1694

    PubMed  CAS  Google Scholar 

  4. Laaroubi K, Delbe J, Vacherot F, Desgranges P, Tardieu M, Jaye M, Barritault D, Courty J (1994) Mitogenic and in vitro angiogenic activity of human recombinant heparin affin regulatory peptide. Growth Factors 10:89–98

    PubMed  CAS  Google Scholar 

  5. Rauvala H, Vanhala A, Castren E, Nolo R, Raulo E, Merenmies J, Panula P (1994) Expression of HB-GAM (heparin-binding growth-associated molecules) in the pathways of developing axonal processes in vivo and neurite outgrowth in vitro induced by HB-GAM. Brain Res Dev Brain Res 79:157–176

    Article  PubMed  CAS  Google Scholar 

  6. Silos-Santiago I, Yeh HJ, Gurrieri MA, Guillerman RP, Li YS, Wolf J, Snider W, Deuel TF (1996) Localization of pleiotrophin and its mRNA in subpopulations of neurons and their corresponding axonal tracts suggests important roles in neural-glial interactions during development and in maturity. J Neurobiol 31:283–296

    Article  PubMed  CAS  Google Scholar 

  7. Blondet B, Carpentier G, Lafdil F, Courty J (2005) Pleiotrophin cellular localization in nerve regeneration after peripheral nerve injury. J Histochem Cytochem 53:971–977

    Article  PubMed  CAS  Google Scholar 

  8. Seddon AP, Hulmes JD, Decker MM, Kovesdi I, Fairhurst JL, Backer J, Dougher-Vermazen M, Bohlen P (1994) Refolding and characterization of human recombinant heparin-binding neurite-promoting factor. Protein Expr Purif 5:14–21

    Article  PubMed  CAS  Google Scholar 

  9. Blanquaert F, Carpentier G, Morvan F, Caruelle JP, Barritault D, Tardieu M (2003) RGTA modulates the healing pattern of a defect in a monolayer of osteoblastic cells by acting on both proliferation and migration. J Biomed Mater Res 64A:525–532

    Article  CAS  Google Scholar 

  10. Blondet B, Carpentier G, Ait-Ikhlef A, Murawsky M, Rieger F (2002) Motoneuron morphological alterations before and after the onset of the disease in the wobbler mouse. Brain Res 930:53–57

    Article  PubMed  CAS  Google Scholar 

  11. Kury P, Stoll G, Muller HW (2001) Molecular mechanisms of cellular interactions in peripheral nerve regeneration. Curr Opin Neurol 14:635–639

    Article  PubMed  CAS  Google Scholar 

  12. Nishio Y, Nishihira J, Ishibashi T, Kato H, Minami A (2002) Role of macrophage migration inhibitory factor (MIF) in peripheral nerve regeneration: anti-MIF antibody induces delay of nerve regeneration and the apoptosis of Schwann cells. Mol Med 8:509–520

    PubMed  CAS  Google Scholar 

  13. Beuche W, Friede RL (1984) The role of non-resident cells in Wallerian degeneration. J Neurocytol 13:767–796

    Article  PubMed  CAS  Google Scholar 

  14. Liu HM, Yang LH, Yang YJ (1995) Schwann cell properties: 3. C-fos expression, bFGF production, phagocytosis and proliferation during Wallerian degeneration. J Neuropathol Exp Neurol 54:487–496

    PubMed  CAS  Google Scholar 

  15. Tanaka K, Zhang QL, Webster HD (1992) Myelinated fiber regeneration after sciatic nerve crush: morphometric observations in young adult and aging mice and the effects of macrophage suppression and conditioning lesions. Exp Neurol 118:53–61

    Article  PubMed  CAS  Google Scholar 

  16. Ramon YCS (1928) Degeneration and regeneration of the nervous system. London, Oxford University press

  17. Bunge RP (1980) Neurological mutants affecting myelination. Nature 286:106–107

    Article  PubMed  CAS  Google Scholar 

  18. Bovolenta P, Fernaud-Espinosa I (2000) Nervous system proteoglycans as modulators of neurite outgrowth. Prog Neurobiol 61:113–132

    Article  PubMed  CAS  Google Scholar 

  19. Hartmann U, Maurer P (2001) Proteoglycans in the nervous system––the quest for functional roles in vivo. Matrix Biol 20:23–35

    Article  PubMed  CAS  Google Scholar 

  20. Papadimitriou E, Polykratis A, Courty J, Koolwijk P, Heroult M, Katsoris P (2001) HARP induces angiogenesis in vivo and in vitro: implication of N or C terminal peptides. Biochem Biophys Res Commun 282:306–313

    Article  PubMed  CAS  Google Scholar 

  21. Vacherot F, Delbe J, Heroult M, Barritault D, Fernig DG, Courty J (1999) Glycosaminoglycans differentially bind HARP and modulate its biological activity. J Biol Chem 274:7741–7747

    Article  PubMed  CAS  Google Scholar 

  22. Heroult M, Bernard-Pierrot I, Delbe J, Hamma-Kourbali Y, Katsoris P, Barritault D, Papadimitriou E, Plouet J, Courty J (2004) Heparin affin regulatory peptide binds to vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. Oncogene 23:1745–1753

    Article  PubMed  CAS  Google Scholar 

  23. Hienola A, Pekkanen M, Raulo E, Vanttola P, Rauvala H (2004) HB-GAM inhibits proliferation and enhances differentiation of neural stem cells. Mol Cell Neurosci 26:75–88

    Article  PubMed  CAS  Google Scholar 

  24. Chen S, Bisby MA (1993) Impaired motor axon regeneration in the C57BL/Ola mouseDelayed wallerian degeneration in sciatic nerves of C57BL/Ola mice is associated with impaired regeneration of sensory axons. J Comp Neurol 333:449–454

    Article  PubMed  CAS  Google Scholar 

  25. Hirata K, Mitoma H, Ueno N, He JW, Kawabuchi M (1999) Differential response of macrophage subpopulations to myelin degradation in the injured rat sciatic nerve. J Neurocytol 28:685–695

    Article  PubMed  CAS  Google Scholar 

  26. Hobson MI (2002) Increased vascularisation enhances axonal regeneration within an acellular nerve conduit. Ann R Coll Surg Engl 84:47–53

    PubMed  Google Scholar 

  27. Hobson MI, Green CJ, Terenghi G (2000) VEGF enhances intraneural angiogenesis and improves nerve regeneration after axotomy. J Anat 197 (Pt 4):591–605

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Blondet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blondet, B., Carpentier, G., Ferry, A. et al. Exogenous Pleiotrophin Applied to Lesioned Nerve Impairs Muscle Reinnervation. Neurochem Res 31, 907–913 (2006). https://doi.org/10.1007/s11064-006-9095-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9095-x

Keywords

Navigation