Skip to main content

Advertisement

Log in

Alzheimer’s Disease: Halothane Induces Aβ Peptide to Oligomeric Form—Solution NMR Studies

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

An Erratum to this article was published on 08 November 2007

Abstract

Alzheimer’s disease (AD) is a significant contributor to cognitive decline and is responsible for about half of the cases of dementia in later life. Although exact etiology of AD is not known, however, many risk factors for AD are identified. Anesthesia for elderly patients is considered as a risk factor in AD as they frequently experience deterioration in cognitive function with long exposure to anesthetics during surgery. Inhaled anesthetic agents remain the mainstay for patients undergoing major surgical operations. This study using multidimensional NMR spectroscopy provides the first direct evidence in vitro that inhaled anesthetic, halothane specifically interacts with Aβ40 and Aβ42 peptide. Halothane induces structural alternation of Aβ peptide from soluble monomeric α-helical form to oligomeric β-sheet conformation, which may hasten the onset of AD. Aβ42 is more prone to oligomerization compared to Aβ40 in the presence of halothane. The molecular mechanism of halothane induced structural alternation of Aβ peptide is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McKeon-O’Malley C, Tanzi R (2001) Etiology, genetics, and pathogenesis of Alzheimer’s disease, Functional Neurology of Aging. Acad Press 333–348

  2. Jarrett JT, Berger EP, Lansbury PT (1993) The carboxy terminus of the beta-amyloid protein is critical for the seeding of amyloid formation – implications for the pathogenesis of Alzheimers-disease. Biochemistry 32:4693–4697

    Article  PubMed  CAS  Google Scholar 

  3. Zeng H, Zhang Y, Peng L, Shao H, Menon NK, Yang J, Salomon AR, Freidland RP, Zagorski MG (2001) Nicotine and amyloid formation. Biol Psychiatry 49:248–57

    Article  PubMed  CAS  Google Scholar 

  4. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    Article  PubMed  CAS  Google Scholar 

  5. Mandal PK, Pettegrew JW (2004) Alzheimer’s disease: soluble oligomeric A beta(1–40) peptide in membrane mimic environment from solution NMR and circular dichroism studies. Neurochem Res 29:2267–2272

    Article  PubMed  CAS  Google Scholar 

  6. Muller WE, Koch S, Eckert A, Hartmann H, Scheuer K (1995) Beta-Amyloid Peptide Decreases Membrane Fluidity. Brain Res 674:133–136

    Article  PubMed  CAS  Google Scholar 

  7. Arispe N, Rojas E, Pollard HB (1993) Alzheimer-disease amyloid beta-protein forms calcium channels in bilayer-membranes – blockade by tromethamine and aluminum. Proc Nat Acad Sci USA 90:567–571

    Article  PubMed  CAS  Google Scholar 

  8. Bracco L, Gallato R, Grigoletto F, Lippi A, Lepore V, Bino G, Lazzaro MP, Carella F, Piccolo T, Pozzilli C, Giometto B, Amaducci L (1994) Factors affecting course and survival in Alzheimers-disease – a 9-year longitudinal-study. Arch Neurol 51:1213–1219

    PubMed  CAS  Google Scholar 

  9. Friedland RP, Fritsch T, Smyth KA, Koss E, Lerner AJ, Chen CH, Petot GJ, Debanne SM (2001) Patients with Alzheimer’s disease have reduced activities in midlife compared with healthy control-group members. Proc Nat Acad Sci USA 98:3440–3445

    Article  PubMed  CAS  Google Scholar 

  10. Edland SD, Tobe TO, Rieder MJ, Bowen JD, McCormick W, Teri L, Schellenberg GD, Larson EB, Nickerson DA, Kukull WA (2002) Mitochondrial genetic variants and Alzheimer disease: a case–control study of the T4336C and G5460A variants. Alzheimer Dis Associated Disorders 16:1–7

    Article  CAS  Google Scholar 

  11. Fleminger S, Oliver DL, Lovestone S, Rabe-Hesketh S, Giora A (2003) Head injury as a risk factor for Alzheimer’s disease: the evidence 10 years on; a partial replication. J Neurol Neurosurgery Psychiatry 74:857–862

    Article  CAS  Google Scholar 

  12. Stewart R, Liolitsa D (1999) Type 2 diabetes mellitus, cognitive impairment and dementia. Diabetic Med 16:93–112

    Article  PubMed  CAS  Google Scholar 

  13. Ravona-Springer R, Davidson M, Noy S (2003) The role of cardiovascular risk factors in Alzheimer’s disease. Cns Spectrums 8:824–831

    PubMed  Google Scholar 

  14. Charoonruk G, Munger R, Wengreen H, Corcoran C, Hayden K, Bastian L, Tschanz J, Norton M, Breitner J, Bohmer W (2005) Prospective study of diabetes, gender, and subsequent risk of alzheimer’s disease: The cache county study on memory, health, and aging. Am J Epidemiol 161:S91–S91

    Google Scholar 

  15. Hanning CD (2005) Postoperative cognitive dysfunction. Brit J Anaesthesia 95:82–87

    Article  CAS  Google Scholar 

  16. Prough DS (2005) Anesthetic pitfalls in the elderly patient. J Am College Surgeons 200:784–794

    Article  Google Scholar 

  17. Mandal PK, Pettegrew JW, Mittal S, Mandal R, Mckeag D (2006) Could Anesthesia be a risk factor for Alzheimer’s Disese. Biophys J (in press)

  18. Bohnen N, Warner MA, Kokmen E, Kurland LT (1994) Early and midlife exposure to anesthesia and age of onset of Alzheimer’s disease. Int J Neurosci 77:181–5

    Article  PubMed  CAS  Google Scholar 

  19. Bohnen NI, Warner MA, Kokmen E, Beard CM, Kurland LT (1994) Alzheimer’s disease and cumulative exposure to anesthesia: a case–control study. J Am Geriatr Soc 42:198–201

    PubMed  CAS  Google Scholar 

  20. Muravchick SSD (1995) Parkinsonian symptoms during emergence from general anesthesia. Anaesthesiology 305–307

  21. Bedford PD (1955) Adverse cerebral effects of anasthesia in old people. Lancet 259–263

  22. Bruce DL, Back MJ (1976) Effect of trace anasthetic gases on behavioral performance of volunteers. Brit J Anaesthesia 871–875

  23. Jones MJT (1988) The influence of Anasthetic methods on mental functions. Acta Chirurgica Scandinavia Suppl .550:169–175

    Google Scholar 

  24. Moller JT, Cluitmans P, Rasmussen LS, Houx P, Rasmussen H, Canet J, Rabbitt P, Jolles J, Larsen K, Hanning CD, Langeron O, Johnson T, Lauven PM, Kristensen PA, Biedler A, van Beem H, Fraidakis O, Silverstein JH, Beneken JE, Gravenstein JS (1998) Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International study of post-operative cognitive dysfunction. Lancet 351:857–861

    Article  PubMed  CAS  Google Scholar 

  25. Rasmussen LS, Johnson T, Kuipers HM, Kristensen D, Siersma VD, Vila P, Jolles J, Papaioannou A, Abildstrom H, Silverstein JH, Bonal JA, Raeder J, Nielsen IK, Korttila K, Munoz L, Dodds C, Hanning CD, Moller JT, Investigators I (2003) Does anaesthesia cause postoperative cognitive dysfunction? A randomised study of regional versus general anaesthesia in 438 elderly patients. Acta Anaesthesiologica Scandinavica 47:260–266

    Article  PubMed  CAS  Google Scholar 

  26. Cohendy R, Brougere A, Cuvillon P (2005) Anaesthesia in the older patient. Current Opinion in Clinical Nutrition and Metabolic Care 8:17–21

    Article  PubMed  CAS  Google Scholar 

  27. Eckenhoff RG, Johansson JS (1997) Molecular interactions between inhaled anesthetics and proteins. Pharmacol Rev 49:343–367

    PubMed  CAS  Google Scholar 

  28. Eckenhoff RG, Petersen CE, Ha CE, Bhagavan NV (2000) Inhaled anesthetic binding sites in human serum albumin. J Biol Chem 275:30439–30444

    Article  PubMed  CAS  Google Scholar 

  29. Li CY, Peoples RW, Weight FF (1994) Alcohol action on a neuronal membrane-receptor – evidence for a direct interaction with the receptor protein. Proc Nat Acad Sci USA 91:8200–8204

    Article  PubMed  CAS  Google Scholar 

  30. Bhattacharya AA, Curry S, Franks NP (2000) Binding of the general anesthetics propofol and halothane to human serum albumin – High resolution crystal structures. J Biol Chem 275:38731–38738

    Article  PubMed  CAS  Google Scholar 

  31. Weigl LG, Schreibmayer W (2001) G protein-gated inwardly rectifying potassium channels are targets for volatile anesthetics. Mol Pharmacol 60:282–289

    PubMed  CAS  Google Scholar 

  32. Grasshoff C, Antkowiak B (2004) Propofol and sevoflurane depress spinal neurons in vitro via different molecular targets. Anesthesiology 101:1167–1176

    Article  PubMed  CAS  Google Scholar 

  33. Xi J, Liu R, Asbury GR, Eckenhoff MF, Eckenhoff RG (2004) Inhalational anesthetic-binding proteins in rat neuronal membranes. J Biol Chem 279:19628–19633

    Article  PubMed  CAS  Google Scholar 

  34. Franks NP, Lieb WR (1994) Molecular and cellular mechanisms of general anaesthesia. Nature 367:607–614

    Article  PubMed  CAS  Google Scholar 

  35. Harris RA, Mihic SJ, Dildy-Mayfield JE, Machu TK (1995) Actions of anesthetics on ligand-gated ion channels: role of receptor subunit composition. Faseb J 9:1454–1462

    PubMed  CAS  Google Scholar 

  36. Brennan LK, Froemming GR, Ohlendieck K (2000) Effect of halothane on the oligomerization of the sarcoplasmic reticulum Ca2 + -ATPase. Biochem Biophys Res Commun 271:770–776

    Article  PubMed  CAS  Google Scholar 

  37. Yamakura T, Bertaccini E, Trudell JR, Harris RA (2001) Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol 41:23–51

    Article  PubMed  CAS  Google Scholar 

  38. Eckenhoff RG, Johansson JS, Wei HF, Carnini A, Kang BB, Wei WL, Pidikiti R, Keller JM, Eckenhoff MF (2004) Inhaled anesthetic enhancement of amyloid-beta oligomerization and cytotoxicity. Anesthesiology 101:703–709

    Article  PubMed  CAS  Google Scholar 

  39. Mandal PK (2002) Complete NMR spectroscopic assignment of a neuronal transduction protein. Monatshefte Fur Chemie 133:205–217

    CAS  Google Scholar 

  40. Mandal PK, Majumdar A (2004) A comprehensive discussion of HSQC and HMQC pulse sequences. Concepts Mag Resonance Part A 20A:1–23

    Article  CAS  Google Scholar 

  41. Mandal PK, Pettegrew JW (2004) Alzheimer’s disease: NMR studies of asialo (GM1) and trisialo (GT1b) ganglioside interactions with A beta(1–40) peptide in a membrane mimic environment. Neurochem Res 29:447–453

    Article  PubMed  CAS  Google Scholar 

  42. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–93

    Article  PubMed  CAS  Google Scholar 

  43. Garrett DS, Powers R, Gronenborn AM, Clore GM (1991) A common sense approach to peak picking two-, three- and four-dimensional spectra using automatic computer analysis of contour diagrams. J Mag. Reson 95:214–220

    CAS  Google Scholar 

  44. Goddard TD, Kneller DG (1994) SPARKY 3, University of California, San Francisco

    Google Scholar 

  45. Teplow DB (1998) Structural and kinetic features of amyloid beta-protein fibrillogenesis. Amyloid-J Protein Folding Disorders 5:121–142

    CAS  Google Scholar 

  46. Talafous J, Marcinowski KJ, Klopman G, Zagorski MG (1994) Solution Structure of Residues-1–28 of the Amyloid Beta-Peptide. Biochemistry 33:7788–7796

    Article  PubMed  CAS  Google Scholar 

  47. Marcinowski KJ, Shao H, Clancy EL, Zagorski MG (1998) Solution structure model of residues 1–28 of the amyloid beta peptide when bound to micelles. J Am Chem Soc 120:11082–11091

    Article  CAS  Google Scholar 

  48. Coles M, Bicknell W, Watson AA, Fairlie DP, Craik DJ (1998) Solution structure of amyloid beta-peptide(1–40) in a water-micelle environment. Is the membrane-spanning domain where we think it is? Biochemistry 37:11064–11077

    Article  PubMed  CAS  Google Scholar 

  49. Wenker OC (1999) Review Of Currently Used Inhalation Anesthetics: Part I. The Internet J Anesthesiol 3

  50. Barash PG, Cullen BF, Stoelting RK (2001) Lippincott Williams and Wilkins; 4th edn. p 378

  51. Eger EI 2nd, Saidman LJ, Brandstater B (1965) Minimum alveolar anesthetic concentration: a standard of anesthetic potency. Anesthesiology 26:756–763

    Article  PubMed  Google Scholar 

  52. Eckenhoff RG (1996) Amino acid resolution of halothane binding sites in serum albumin. Journal of Biological Chemistry 271:15521–15526

    PubMed  CAS  Google Scholar 

  53. Johansson JS, Eckenhoff RG, Dutton PL (1995). Binding of halothane to serum-albumin – relevance to theories of narcosis – reply. Anesthesiology 83:1385–1385

    Article  Google Scholar 

  54. Johansson JS, Manderson GA, Ramoni R, Grolli S, Eckenhoff RG (2005) Binding of the volatile general anesthetics halothane and isoflurane to a mammalian beta-barrel protein. Febs Journal 272:573–581

    Article  PubMed  CAS  Google Scholar 

  55. Manderson GA, Johansson JS (2002) Role of aromatic side chains in the binding of volatile general anesthetics to a four-alpha-helix bundle. Biochemistry 41:4080–4087

    Article  PubMed  CAS  Google Scholar 

  56. Pohorille A, Cieplak P, Wilson MA (1996) Interactions of anesthetics with the membrane-water interface. Chemical Physics 204:337–345

    Article  PubMed  CAS  Google Scholar 

  57. Yokono S, Ogli K, Miura S, Ueda I (1989) 400 MHz two-dimensional nuclear Overhauser spectroscopy on anesthetic interaction with lipid bilayer. Biochimica et Biophysica Acta 982:300–302

    Article  PubMed  CAS  Google Scholar 

  58. Koubi L, Tarek M, Klein ML, Scharf D (2000) Distribution of halothane in a dipalmitoyl phosphatidylcholine bilayer from molecular dynamics calculations. Biophysical Journal 78:800–811

    PubMed  CAS  Google Scholar 

  59. Sonner JM, Antognini JF, Dutton RC, Flood P, Gray AT, Harris RA, Homanics GE, Kendig J, Orser B, Raines DE, Trudell J, Vissel B, Eger EI (2003) Inhaled anesthetics and immobility: mechanisms, mysteries, and minimum alveolar anesthetic concentration. Anesthesia and Analgesia 97:718–740

    Article  PubMed  CAS  Google Scholar 

  60. Pohorille A, Wilson MA, New MH, Chipot C (1998) Concentrations of anesthetics across the water-membrane interface; the Meyer-Overton hypothesis revisited. Toxicology Letters 101:421–430

    Article  Google Scholar 

  61. Tu KC, Tarek M, Klein ML, Scharf D (1998) Effects of anesthetics on the structure of a phospholipid bilayer: Molecular dynamics investigation of halothane in the hydrated liquid crystal phase of dipalmitoylphosphatidylcholine. Biophys J 75:2123–2134

    PubMed  CAS  Google Scholar 

  62. Wymore T, Wong TC (1999). Molecular dynamics study of substance P peptides in a biphasic membrane mimic. Biophys J 76:1199–1212

    Article  PubMed  CAS  Google Scholar 

  63. Campagna JA, Miller KW, Forman SA (2003) Drug therapy: Mechanisms of actions of inhaled anesthetics. New Engl J Med 348:2110–2124

    Article  PubMed  CAS  Google Scholar 

  64. Balasubramanian SV, Campbell RB, Straubinger RM (2002) Propofol, a general anesthetic, promotes the formation of fluid phase domains in model membranes. Chemistry and Physics of Lipids 114:35–44

    Article  PubMed  CAS  Google Scholar 

  65. Johansson JS, Zou H, Tanner JW (1999) Bound volatile general anesthetics alter both local protein dynamics and global protein stability. Anesthesiology 90:235–245

    Article  PubMed  CAS  Google Scholar 

  66. Pidikiti R, Shamim M, Mallela KMG, Reddy KS, Johansson JS (2005) Expression and characterization of a four-alpha-helix bundle protein that binds the volatile general anesthetic halothane. Biomacromolecules 6:1516–1523

    Article  PubMed  CAS  Google Scholar 

  67. Pidikiti R, Zhang T, Mallela KMG, Shamim M, Reddy KS, Johansson JS (2005) Sevoflurane-induced structural changes in a four-alpha-helix bundle protein. Biochemistry 44:12128–12135

    Article  PubMed  CAS  Google Scholar 

  68. Solt K, Johansson JS, Raines DE (2006) Kinetics of anesthetic-induced conformational transitions in a four-alpha-helix bundle protein. Biochemistry 45:1435–1441

    Article  PubMed  CAS  Google Scholar 

  69. Gasparini M, Vanacore N, Schiaffini C, Brusa L, Panella M, Talarico G, Bruno G, Meco G, Brusa, Land Lenzi GL (2002) A case-control study on Alzheimer’s disease and exposure to anesthesia. Neurol Sci 23:11–14

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Pravat K Mandal acknowledges the financial support, in the form of research grants from the American Health Assistance Foundation, American Parkinson Disease Association and Alzheimer Disease Research Center, University of Pittsburgh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravat K. Mandal.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11064-007-9476-9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, P., Pettegrew, J., McKeag, D. et al. Alzheimer’s Disease: Halothane Induces Aβ Peptide to Oligomeric Form—Solution NMR Studies. Neurochem Res 31, 883–890 (2006). https://doi.org/10.1007/s11064-006-9092-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9092-0

Keywords

Navigation