Neurochemical Research

, Volume 31, Issue 7, pp 877–881 | Cite as

Decreased Creatine Kinase Activity Caused by Electroconvulsive Shock

  • Márcio Búrigo
  • Clarissa A. Roza
  • Cintia Bassani
  • Gustavo Feier
  • Felipe Dal-Pizzol
  • João Quevedo
  • Emilio L. Streck
Original Paper


Although several advances have occurred over the past 20 years concerning the use and administration of electroconvulsive therapy to minimize side effects of this treatment, little progress has been made in understanding its mechanism of action. Creatine kinase is a crucial enzyme for brain energy homeostasis, and a decrease of its activity has been associated with neuronal death. This work was performed in order to evaluate creatine kinase activity from rat brain after acute and chronic electroconvulsive shock. Results showed an inhibition of creatine kinase activity in hippocampus, striatum and cortex, after acute and chronic electroconvulsive shock. Our findings demonstrated that creatine kinase activity is altered by electroconvulsive shock.


Electroconvulsive shock Electroconvulsive therapy Creatine kinase Brain 



This work was supported by CNPq and UNESC.


  1. 1.
    Madsen TM, Treschow A, Bengzon J et al (2000) Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry 47:1043–1049PubMedCrossRefGoogle Scholar
  2. 2.
    Rosen Y, Reznik I, Sluvis A et al (2003) The significance of the nitric oxide in eletro-convulsive therapy: a proposed neurophysiological mechanism. Med Hypotheses 60:424–429PubMedCrossRefGoogle Scholar
  3. 3.
    American Psychiatric Association (1990) The practice of Eletroconvulsive Therapy: recommendations for Practice, Training, and Privilegina: a Task Force Report of the American Psychiatric Association. American Psychiatric Association Press, WashingtonGoogle Scholar
  4. 4.
    The UK ECT Review Group (2003) Efficacy and safety of electroconvulsive therapy in depressive disorders: a systematic review and meta-analysis. Lancet 361:799–808CrossRefGoogle Scholar
  5. 5.
    Abrams R (ed) (1992) Electroconvulsive therapy. Oxford University Press, New YorkGoogle Scholar
  6. 6.
    Barichello T, Bonatto F, Agostinho FR et al (2004) Structure-related oxidative damage in rat brain after acute and chronic electroshock. Neurochem Res 29:1749–1753PubMedCrossRefGoogle Scholar
  7. 7.
    Barichello T, Bonatto F, Feier G et al (2004) No evidence for oxidative damage in the hippocampus after acute and chronic electroshock in rats. Brain Res 1014:177–183PubMedCrossRefGoogle Scholar
  8. 8.
    Devanand DP, Dwork AJ, Hutchinson ER et al (1994) Does ECT alter brain structure? Am J Psychiatry 151:957–970PubMedGoogle Scholar
  9. 9.
    Gombos Z, Mendonça A, Cottrell GA et al (1999) Ketamine and phenobarbital do not reduce the evoked-potential enhancement induced by electroconvulsive shock seizures in the rat. Neurosci Lett 5:33–36CrossRefGoogle Scholar
  10. 10.
    Sackeim HA, Luber B, Katzman GP et al (1996) The effects of eletroconvulsive therapy on quantitative eletroencephalograms. Relationship to clinical outcome. Arch Gen Psychiatry 53:814–824PubMedGoogle Scholar
  11. 11.
    Newman ME, Gur E, Shapira B et al (1998) Neurochemical mechanisms of action of ECS: evidence from in vivo studies. J ECT 14:153–171PubMedGoogle Scholar
  12. 12.
    Bessman SP, Carpenter CL (1985) The creatine–creatine phosphate energy shuttle. Annu Rev Biochem 54:831–862PubMedCrossRefGoogle Scholar
  13. 13.
    Schnyder T, Gross H, Winkler H et al (1991) Structure of the mitochondrial creatine kinase octamer: high-resolution shadowing and image averaging of single molecules and formation of linear filaments under specific staining conditions. J Cell Biol 112:95–101PubMedCrossRefGoogle Scholar
  14. 14.
    Wallimann T, Wyss M, Brdiczka D et al (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the phosphocreatine circuit for cellular energy homeostasis. Biochem J 281:21–40PubMedGoogle Scholar
  15. 15.
    Tomimoto H, Yamamoto K, Homburger HA et al (1993) Immunoelectron microscopic investigation of creatine kinase BB-isoenzyme after cerebral ischemia in gerbils. Acta Neuropathol (Berl) 86:447–455Google Scholar
  16. 16.
    David S, Shoemaker M, Haley BE (1998) Abnormal properties of creatine kinase in Alzheimer’s disease brain: correlation of reduced enzyme activity and active site photolabeling with aberrant cytosol-membrane partitioning. Brain Res Mol Brain Res 54:276–287PubMedCrossRefGoogle Scholar
  17. 17.
    Aksenov M, Aksenova M, Butterfield DA et al (2000) Oxidative modification of creatine kinase BB in Alzheimer’s disease brain. J Neurochem 74:2520–2527PubMedCrossRefGoogle Scholar
  18. 18.
    Hamman BL, Bittl JA, Jacobus WE et al (1995) Inhibition of the creatine kinase reaction decreases the contractile reserve of isolated rat hearts. Am J Physiol 269:1030–1036Google Scholar
  19. 19.
    Gross WL, Bak MI, Ingwall JS et al (1996) Nitric oxide inhibits creatine kinase and regulates heart contractile reserve. Proc Natl Acad Sci USA 93:5604–5609PubMedCrossRefGoogle Scholar
  20. 20.
    Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–267PubMedGoogle Scholar
  21. 21.
    Oliver IT (1955) A spectrophotometric method for the determination of creatine phosphokinase and myokinase. Biochem J 61:116–122PubMedGoogle Scholar
  22. 22.
    Rosalki SB (1967) An improved procedure for serum creatine phosphokinase determination. J Lab Clin Med 69:696–705PubMedGoogle Scholar
  23. 23.
    Khuchua ZA, Qin W, Boero J et al (1998) Octamer formation and coupling of cardiac sarcomeric mitochondrial creatine kinase are mediated by charged N-terminal residues. J Biol Chem 273:22990–22996PubMedCrossRefGoogle Scholar
  24. 24.
    Schlattner U, Wallimann T (2000) Octamers of mitochondrial creatine kinase isoenzymes differ in stability and membrane binding. J Biol Chem 275:17314–17320PubMedCrossRefGoogle Scholar
  25. 25.
    Saks VA, Kuznetsov AV, Kupriyanov VV et al (1985) Creatine kinase of rat heart mitochondria. The demonstration of functional coupling to oxidative phosphorylation in an inner membrane-matrix preparation. J Biol Chem 260:7757–7764PubMedGoogle Scholar
  26. 26.
    Nobler MS, Sackeim HA (1998) Mechanisms of action of electroconvulsive therapy: functional brain imaging studies. Psychiatry Annals 28:23–29Google Scholar
  27. 27.
    Nobler MS, Sackeim HA, Prohovnik I et al (1994) Regional cerebral blood flow in mood disorders, III: treatment and clinical response. Arch Gen Psychiatry 51:884–897PubMedGoogle Scholar
  28. 28.
    Streck EL, Feier G, Búrigo M et al (2006) Effects of electroconvulsive seizures on Na+, K+-ATPase activity in the rat hippocampus. Unpublished dataGoogle Scholar
  29. 29.
    Drevets WC (1998) Functional neuroimaging studies of depression: the anatomy of melancholia. Annu Rev Med 49:341–361PubMedCrossRefGoogle Scholar
  30. 30.
    Gamaro GD, Streck EL, Matté C et al (2003) Reduction of hippocampal Na+, K+-ATPase activity in rats subjected to an experimental model of depression. Neurochem Res 28:1339–1344PubMedCrossRefGoogle Scholar
  31. 31.
    Erakovic V, Zupan G, Varljen J et al (2001) Altered activities of rat brain metabolic enzymes in electroconvulsive shock-induced seizures. Epilepsia 42:181–189PubMedCrossRefGoogle Scholar
  32. 32.
    Webb MG, O’Donnell MP, Draper RJ et al (1984) Brain-type creatine phosphokinase serum levels before and after ECT. Br J Psychiatry 144:525–528PubMedCrossRefGoogle Scholar
  33. 33.
    Burbaeva GS, Savushkina OK, Dmitrievm AD (1999) Brain isoforms of creatine kinase in health and mental disease: Alzheimer’s disease and schizophrenia. Vestn Ross Akad Med Nauk 1:20–24PubMedGoogle Scholar
  34. 34.
    Ferreira GC, Viegas CM, Schuck PF et al (2005) Glutaric acid moderately compromises energy metabolism in rat brain. Int J Dev Neurosci 23:687–693CrossRefGoogle Scholar
  35. 35.
    Schuck PF, Rosa RB, Pettenuzzo LF et al (2004) Inhibition of mitochondrial creatine kinase activity from rat cerebral cortex by methylmalonic acid. Neurochem Int 45:661–667PubMedCrossRefGoogle Scholar
  36. 36.
    Fleck RM, Junior VR, Giacomazzi J et al (2005) Cysteamine prevents and reverses the inhibition of creatine kinase activity caused by cystine in rat brain cortex. Neurochem Int 46:391–397PubMedCrossRefGoogle Scholar
  37. 37.
    Pilla C, Cardozo RF, Dornelles PK et al (2003) Kinetic studies on the inhibition of creatine kinase activity by branched-chain amino acids in the brain cortex of rats. Int J Dev Neurosci 21:145–151PubMedCrossRefGoogle Scholar
  38. 38.
    Sackeim HA (2000) Memory and ECT: from polarization to reconciliation. J ECT 16:87–96PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Márcio Búrigo
    • 1
  • Clarissa A. Roza
    • 1
  • Cintia Bassani
    • 1
  • Gustavo Feier
    • 3
  • Felipe Dal-Pizzol
    • 2
  • João Quevedo
    • 3
  • Emilio L. Streck
    • 1
  1. 1.Laboratório de Bioquímica ExperimentalUniversidade do Extremo Sul CatarinenseCriciúmaBrazil
  2. 2.Laboratório de Fisiopatologia ExperimentalUniversidade do Extremo Sul CatarinenseCriciúmaBrazil
  3. 3.Laboratório de NeurociênciasUniversidade do Extremo Sul CatarinenseCriciúmaBrazil

Personalised recommendations