Skip to main content
Log in

Intranigral Dopamine Toxicity and α-Synuclein Response in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

There is increasing evidence that, in addition to its function as the main neurotransmitter in the nigrostriatal pathway, dopamine (DA) may be neurotoxic in certain conditions. In this study, the toxicity of DA was assessed by direct injection into the substantia nigra of anaesthetised rats, and its effects were compared with those of 6-hydroxydopamine. Brains were removed 1, 2 and 3 weeks after the lesion for histological or neurochemical analysis. DA caused a significant loss of 35% of tyrosine hydroxylase-positive neurons in the pars compacta of substantia nigra and a 40% reduction of striatal DA content. Cells with signs compatible with both apoptosis and autophagy were observed. GADD153, a parameter of endoplasmic reticulum stress, was strongly induced by 6-hydroxydopamine but not by DA. DA increased the α-synuclein content 1 week after the lesion (but not at the later times analyzed) in tyrosine hydroxylase-positive and in non-dopaminergic fibers of pars reticulata. The α-synuclein increase may be a physiological temporal response to DA accumulation and/or to cell damage, but the simultaneous presence of α-synuclein and DA in the cell cytoplasm at concentration higher than normal is not exempt from risk. In fact, their incubation in a free cell system gives a stable dimerized form of α-synuclein that has been described as the critical rate-limiting step for its abnormal fibrillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barzilai A, Melamed E, Shirvan A (2001) Is there a rationale for neuroprotection against dopamine toxicity in Parkinson’s disease? Cell Mol Neurobiol 21:215–235

    Article  PubMed  CAS  Google Scholar 

  2. Barzilai A, Daily D, Zilkha-Falb R, Ziv I, Offen D, Melamed E, Shirvan A (2003) The molecular mechanisms of dopamine toxicity. Adv Neurol 91:73–82

    PubMed  CAS  Google Scholar 

  3. Offen D, Ziv I, Panet H, Wasserman L, Stein R, Melamed E, Barzilai A (1997) Dopamine-induced apoptosis is inhibited in PC12 expressing bcl-2. Cell Mol Neurobiol 17:289–304

    Article  PubMed  CAS  Google Scholar 

  4. Lai C-T, Yu PH (1997) Dopamine- and l-ß-3,4-dihydroxyphenylalanine hydrochloride (l-dopa)-induced cytotoxicity towards catecholaminergic neuroblastoma SH-SY5Y cells. Biochem Pharmacol 53:363–372

    Article  PubMed  CAS  Google Scholar 

  5. Michel PP, Hefti F (1990) Toxicity of 6-hydroxydopamine and dopamine for dopaminergic neurons in culture. J Neurosci Res 25:428–435

    Article  Google Scholar 

  6. McLaughlin BA, Nelson D, Erecinska M, Chesselet MF (1998) Toxicity of dopamine to striatal neurons in vitro and potentiation of cell death by mitochondrial inhibitors. J Neurochem 70:2406–2415

    Article  PubMed  CAS  Google Scholar 

  7. Filloux F, Townsend J (1993) Pre- and post-synaptic neurotoxic effects of dopamine demonstrated by intrastriatal injection. Exp Neurol 119:79–88

    Article  PubMed  CAS  Google Scholar 

  8. Hattori A, Luo Y, Umegaki H, Munoz J, Roth GS (1998) Intrastriatal injection of dopamine results in DNA damage and apoptosis in rats. Neuroreport 9:2569–2572

    PubMed  CAS  Google Scholar 

  9. Ungerstedt U (1976) 6-Hydroxydopamine-induced degeneration of the nigrostriatal dopamine pathway: the turning syndrome. Pharmacol Ther 2:37–40

    CAS  Google Scholar 

  10. Slivka A, Cohen G (1985) Hydroxyl radical attack on dopamine. J Biol Chem 260:15466–15472

    PubMed  CAS  Google Scholar 

  11. Sulzer D, Bogulavsky J, Larsen KE, Behr GE, Karatekin E, Kleinman MH, Turro N, Krantz D, Edwards RH, Greene LA, Zecca L (2000) Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc Natl Acad Sci USA 97:11869–11874

    Article  PubMed  CAS  Google Scholar 

  12. Simantov R, Blinder E, Ratovitski T, Tauber M, Gabbay M, Porat S (1996) Dopamine-induced apoptosis in human neuronal cell: inhibition by nucleic acids antisense to the dopamine transported. Neuroscience 74:39–50

    Article  PubMed  CAS  Google Scholar 

  13. Gómez-Santos C, Ferrer I, Santidrián AF, Barrachina M, Gil J, Ambrosio S (2003) Dopamine induces autophagic cell death and α-synuclein increase in human neuroblastoma SH-SY5Y cells. J Neurosci Res 73:341–350

    Article  PubMed  CAS  Google Scholar 

  14. Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Márquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC, Agid Y (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12:25–31

    PubMed  CAS  Google Scholar 

  15. Stokes AH, Freeman WM, Mitchell SG, Burnette TA, Hellmann GM, Vrana KE (2002) Induction of GADD45 and GADD153 in neuroblastoma cells by dopamine-induced toxicity. Neurotoxicol 23:675–684

    Article  CAS  Google Scholar 

  16. Holtz WA, O’Malley KL (2003) Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. J Biol Chem 278:19367–19377

    Article  PubMed  CAS  Google Scholar 

  17. Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389

    Article  PubMed  CAS  Google Scholar 

  18. Gómez-Santos C, Barrachina M, Giménez-Xavier P, Dalfó E, Ferrer I, Ambrosio S (2005) Induction of C/EBPß and GADD153 expression by dopamine in human neuroblastoma cells; relationship with α-synuclein increase and cell damage. Brain Res Bull 65:87–95

    Article  PubMed  CAS  Google Scholar 

  19. Bennett MC (2005) The role of α-synuclein in neurodegenerative diseases. Pharmacol Ther 103:311–331

    Article  CAS  Google Scholar 

  20. Vila M, Przedborski S (2004) Genetic clues to the pathogenesis of Parkinson’s disease. Nature Med 10 Suppl:S58–S62

    Article  PubMed  CAS  Google Scholar 

  21. Espino A, Llorens J, Calopa M, Bartrons R, Rodriguez-Farré E, Ambrosio S (1995) Cerebrospinal dopamine metabolites in rats after intrastriatal administration of 6-hydroxydopamine or 1-methyl-4-phenylpyridinium ion. Brain Res 669:19–25

    Article  PubMed  CAS  Google Scholar 

  22. Kearns CM, Gash DM (1995) GDNF protects nigral dopamine neurons against 6-hydroxydopamine in vivo. Brain Res 672:104–111

    Article  PubMed  CAS  Google Scholar 

  23. Schmued LC, Albertson C, Slikker A Jr (1997) Fluoro-jade: a novel fluorochrome for the sensitive reliable histochemical localization of neuronal degeneration. Brain Res 751:37–46

    Article  PubMed  CAS  Google Scholar 

  24. Aroca P, Solano F, García-Borrón JC, Lozano JA (1990) A new spectrophotometric assay for dopachrome tautomerase. J Biochem Biophys Methods 21:35–46

    Article  PubMed  CAS  Google Scholar 

  25. Ariano MA, Grissell AE, Littlejohn FC, Buchanan TM, Elsworth JD, Collier TJ, Steece-Collier K (2005) Partial dopamine loss enhances activated caspase-3 activity: differential outcomes in striatal projection systems. J Neurosci Res 82:387–396

    Article  PubMed  CAS  Google Scholar 

  26. Altar CA, Marien M, Marshall JF (1987) Time course of adaptations in dopamine biosynthesis, metabolism, and release following nigrostriatal lesions: implications for behavioral recovery from brain injury. J Neurochem 48:390–399

    PubMed  CAS  Google Scholar 

  27. Zuch CL, Nordstroem VK, Briedrick LA, Hoering GR, Granholm AC, Bickford PC (2000) Time course of degenerative alterations in nigral dopaminergic neurons following a 6-hydroxydopamine lesion. J Comp Neurol 427: 440–454

    Article  PubMed  CAS  Google Scholar 

  28. Kopin IJ (1993) Neurotransmitters and disorders of the basal ganglia. In: Siegel GJ, Agranoff BW, Albers RW, Molinoff PB (eds). Basic Neurochemistry. Raven Press, New York, p 93

    Google Scholar 

  29. Baker AJ, Zornow MH, Scheller MS, Yaksh TL, Skilling SR, Smullin DH, Larson AA, Kuczenski R (1991) Changes in extracellular concentrations of glutamate, aspartate, glycine, dopamine, serotonin, and dopamine metabolites after transient global ischemia in the rabbit brain. J Neurochem 57:1370–1379

    PubMed  CAS  Google Scholar 

  30. Gómez C, Ferrer I, Reiriz J, Viñals F, Barrachina M, Ambrosio S (2001) Low concentrations of 1-methyl-4-phenylpyridinium ion induce caspase-mediated apoptosis in human SH-SY5Y neuroblastoma cells. Brain Res 935:32–39

    Article  Google Scholar 

  31. Liang Q, Liou AK, Ding Y, Cao G, Xiao X, Perez RG, Chen J (2004) 6-Hydroxydopamine induces dopaminergic cell degeneration caspase-9-mediated apoptotic pathway that is attenuated by caspase-9dn expression. J Neurosci Res 77: 747–761

    Article  PubMed  CAS  Google Scholar 

  32. Junn E, Mouradian MM (2001) Apoptotic signaling in dopamine-induced cell death: the role of oxidative stress, p38 mitogen-activated protein kinase, cytochrome c and caspases. J Neurochem 78:374–383

    Article  PubMed  CAS  Google Scholar 

  33. Cutillas B, Espejo M, Gil J., Ferrer I, Ambrosio S (1999) Caspase inhibition protects nigral neurons against 6-hydroxydopamine-induced retrograde degeneration. Neuroreport 10:2605–2608

    PubMed  CAS  Google Scholar 

  34. Conn KJ, Gao W-W, Ullman MD, McKeon-O’Malley C, Eisenhauer PB, Fine RE, Wells JM (2002) Specific up-regulation of GADD153/CHOP in 1-methyl-4-phenyl-pyridinium-treated SH-SY5Y cells. J Neurosci Res 68:755–760

    Article  PubMed  CAS  Google Scholar 

  35. Giménez-Xavier P, Gómez-Santos C, Castaño E, Francisco R, Boada J, Unzeta M, Sanz E, Ambrosio S (2006) The decrease of NAD(P)H has a prominent role in dopamine toxicity. Biochim Biophys Acta 1762:564–574

    PubMed  Google Scholar 

  36. Harrington KA, Augood SJ, Kingsbury AE, Foster OJF, Emson PC (1996) Dopamine transported (DAT) and synaptic vesicle amine transporter (VMAT2) gene expression in the substantia nigra of control and Parkinson’s disease. Mol Brain Res 36:157–162

    Article  PubMed  CAS  Google Scholar 

  37. Fahn S (1997) Levodopa-induced neurotoxicity, does it represent a problem for the treatment of Parkinson’s disease? CNS Drugs 8:376–393

    CAS  Google Scholar 

  38. Bustamante D, You Z-B, Castel M-N, Johansson S, Goiny M, Terenius L, Hökfelt T, Herrera-Marschitz M (2002) Effect of single and repeated methamphetamine treatment on neurotransmitter release in substantia nigra and neostriatum of the rat. J Neurochem 83:645–654

    Article  PubMed  CAS  Google Scholar 

  39. Sidhu A, Wersinger C, Moussa CEH, Vernier P (2004) The role of α-synuclein in both neuroprotection and neurodegeneration. Ann N Y Acad Sci 1035:250–270

    Article  PubMed  CAS  Google Scholar 

  40. Vila M, Vukasovic S, Jackson LV, Neystat M, Jakowec M, Przedborski S (2000) α-Synuclein up-regulation in substantia nigra of dopaminergic neurons following administration of the parkinsonian toxin MPTP. J Neurochem 74:721–729

    Article  PubMed  CAS  Google Scholar 

  41. Conway KA, Rochet JC, Bieganski RM, Landsbury PT (2001) Kinetic stabilization of the α-synuclein protofibril by a dopamine-α-synuclein adduct. Science 294:1346–1349

    Article  PubMed  CAS  Google Scholar 

  42. Souza JM, Giasson BI, Chen Q, Lee VM Y, Ischiropoulos H (1999) Dityrosine cross-linking promotes formation of stable α-synuclein polymers. J Biol Chem 275:18344–18349

    Article  Google Scholar 

  43. Krishnan S, Chi EY, Wood SJ, Kendrick BS, Li C, Garzón-Rodríguez W, Wypych J, Randolph TW, Narhi L-O, Biere AL, Citron M, Carpenter JF (2003) Oxidative dimer formation is the critical rate-limiting step for Parkinson’s disease α-synuclein fibrillogenesis. Biochemistry 42:829–837

    Article  PubMed  CAS  Google Scholar 

  44. Linert W, Jameson GNL (2000) Redox reactions of neurotransmitters possibly involved in the progression of Parkinson’s disease. J Inorg Biochem 79:319–326

    Article  PubMed  CAS  Google Scholar 

  45. Norris EH, Giasson BI, Hodara R, Xu S, Trojanowski JQ, Ischiropoulos H, Lee VM (2005) Reversible inhibition of alpha-synuclein fibrillization by dopaminochrome-mediated conformational alterations. J Biol Chem 280:21212–21219

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank the members of the Biochemistry, Neuropathology and Biology Unit (Serveis Científic-Tècnics of Campus Bellvitge) of the University of Barcelona. We are also grateful to Robin Rycroft for help with the English. This study was supported by the BFI 2003-02883, FIS 02/0004 and FIS-CIEN C-03006 grants from the Spanish Government and from the Fundació La Marató-TV3 (010310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Santos, C., Giménez-Xavier, P., Ferrer, I. et al. Intranigral Dopamine Toxicity and α-Synuclein Response in Rats. Neurochem Res 31, 861–868 (2006). https://doi.org/10.1007/s11064-006-9090-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9090-2

Keywords

Navigation