Neurochemical Research

, Volume 31, Issue 4, pp 483–490 | Cite as

The Effects of Estradiol on Estrogen Receptor and Glutamate Transporter Expression in Organotypic Hippocampal Cultures Exposed to Oxygen--Glucose Deprivation

  • Helena Cimarosti
  • Ross D. O’Shea
  • Nicole M. Jones
  • Ana Paula Horn
  • Fabrício Simão
  • Lauren L. Zamin
  • Melissa Nassif
  • Rudimar Frozza
  • Carlos Alexandre Netto
  • Philip M. Beart
  • Christianne Salbego


The molecular basis of estrogen-mediated neuroprotection against brain ischemia remains unclear. In the present study, we investigated changes in expression of estrogen receptors (ERs) α and β and excitatory amino acid transporters (EAAT) 1 and 2 in rat organotypic hippocampal slice cultures treated with estradiol and subsequently exposed to oxygen--glucose deprivation (OGD). Pretreatment with 17β-estradiol (10 nM) for 7 days protected the CA1 area of hippocampus against OGD (60 min), reducing cellular injury by 46% compared to the vehicle control group. Levels of ERα protein were significantly reduced by 20% after OGD in both vehicle- and estradiol-treated cultures, whereas ERβ was significantly up-regulated by 25% in the estradiol-treated cultures. In contrast, EAAT1 and EAAT2 levels were unchanged in response to estradiol treatment in this model of OGD. These findings suggest that estrogen-induced neuroprotection against ischemia might involve regulation of ERβ and, consequently, of the genes influenced by this receptor.


Ischemia 17β-Estradiol Estrogen receptors Organotypic culture Glutamate transporters 



Supported in part by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq – Brazil), which provided HC a scholarship for research towards Ph.D. in Australia, and by Neurosciences Victoria (NMJ) and a Program Grant (#236805) from the NH&MRC (Australia), of which PMB is a Research Fellow. We thank Dr. D. Pow (University of Queensland) for the gifts of glutamate transporters antibodies.


  1. 1.
    Blanchet PJ, Fang J, Hyland K, Arnold LA, Mouradian MM, Chase TN (1999) Short-term effects of high-dose 17beta-estradiol in postmenopausal PD patients: a crossover study. Neurology 53:91–95PubMedGoogle Scholar
  2. 2.
    Lee SB, McEwen BS (2001) Neurotrophic and neuroprotective actions of estrogens and their therapeutic implications Annu Rev Pharmacol Toxicol 41:569–591PubMedCrossRefGoogle Scholar
  3. 3.
    Aranda A, Pascual A (2001) Nuclear hormone receptors and gene expression. Physiol Rev 81:1269–1304PubMedGoogle Scholar
  4. 4.
    Hall JM, Couse JF, Korach KS (2001) The multifaceted mechanisms of estradiol and estrogen receptor signaling. J Biol Chem 276:36869–36872PubMedCrossRefGoogle Scholar
  5. 5.
    Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. New Eng J Med 330:613–622PubMedCrossRefGoogle Scholar
  6. 6.
    O’Shea RD (2002) Roles and regulation of glutamate transporters in the central nervous system. Clin Exp Pharmacol Physiol 29:1018–1023PubMedCrossRefGoogle Scholar
  7. 7.
    Weaver CE, Park-Chung M, Gibbs TT, Farb DH (1997) 17beta-Estradiol protects against NMDA-induced excitotoxicity by direct inhibition of NMDA receptors. Brain Res 761:338–341PubMedCrossRefGoogle Scholar
  8. 8.
    Wong M, Moss RL (1992) Long-term and short-term electrophysiological effects of estrogen on the synaptic properties of hippocampal CA1 neurons. J Neurosci 12:3217–3225PubMedGoogle Scholar
  9. 9.
    Keller JN, Germeyer A, Begley JG, Mattson MP (1997) 17beta-Estradiol attenuates oxidative impairment of synaptic Na+/K+-ATPase activity, glucose transport, and glutamate transport induced by amyloid beta-peptide and iron. J Neurosci Res 50:522–530PubMedCrossRefGoogle Scholar
  10. 10.
    Liang Z, Valla J, Sefidvash-Hockley S, Rogers J, Li R (2002) Effects of estrogen treatment on glutamate uptake in cultured human astrocytes derived from cortex of Alzheimer’s disease patients. J Neurochem 80:807–814PubMedCrossRefGoogle Scholar
  11. 11.
    Sato K, Matsuki N, Ohno Y, Nakazawa K (2003) Estrogen inhibit l-glutamate uptake activity of astrocytes via membrane estrogen receptor alpha. J Neurochem 86:1498–1505PubMedCrossRefGoogle Scholar
  12. 12.
    Cimarosti H, Zamin LL, Frozza R, Nassif M, Horn AP, Tavares A, Netto CA, Salbego C (2005) Estradiol protects against oxygen and glucose deprivation in rat hippocampal organotypic cultures and activates Akt and inactivates Gsk-3 beta. Neurochem Res 30:191–199PubMedCrossRefGoogle Scholar
  13. 13.
    Cimarosti H, Rodnight R, Tavares A, Paiva R, Valentim L, Rocha E, Salbego C (2001) An investigation of the neuroprotective effect of lithium in organotypic slice culture of rat hippocampus exposed to oxygen and glucose deprivation. Neurosci Lett 315:33–36PubMedCrossRefGoogle Scholar
  14. 14.
    Stoppini L, Buchs P, Muller DA (1991) Simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37:173–182PubMedCrossRefGoogle Scholar
  15. 15.
    Strasser U, Fischer G (1995) Quantitative measurement of neuronal degeneration in organotypic hippocampal cultures after combined oxygen/glucose deprivation. J Neurosci Methods 57:177–186PubMedCrossRefGoogle Scholar
  16. 16.
    Noraberg J, Kristensen BW, Zimmer J (1999) Markers for neuronal degeneration in organotypic slice cultures. Brain Res Protocols 3:278–290CrossRefGoogle Scholar
  17. 17.
    Valentim LM, Rodnight R, Geyer AB, Horn AP, Tavares A, Cimarosti H, Netto CA, Salbego CG (2003) Changes in heat shock protein 27 phosphorylation and immunocontent in response to preconditioning to oxygen and glucose deprivation in organotypic hippocampal cultures. Neuroscience 118:379–386PubMedCrossRefGoogle Scholar
  18. 18.
    Tavares A, Cimarosti H, Valentim L, Salbego C (2001) Profile of phosphoprotein labelling in organotypic slice cultures of rat hippocampus. Neuroreport 12:2705–2709PubMedCrossRefGoogle Scholar
  19. 19.
    Behl C (2002) Oestrogen as a neuroprotective hormone. Nat Rev Neurosci 3:433–442PubMedGoogle Scholar
  20. 20.
    Wilson ME, Dubal DB, Wise PM (2000) Estradiol protects against injury-induced cell death in cortical explant cultures: a role for estrogen receptors. Brain Res 873:235–242PubMedCrossRefGoogle Scholar
  21. 21.
    Xu G-P, Dave KR, Vivero R, Schmidt-Kastner R, Sick TJ, Pérez-Pinzón MA (2002) Improvement in neuronal survival after ischemic preconditioning in hippocampal slice cultures. Brain Res 952:153–158PubMedCrossRefGoogle Scholar
  22. 22.
    Kumar V, Chambon P (1988) The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer. Cell 55:145–156PubMedCrossRefGoogle Scholar
  23. 23.
    Pike CJ (1999) Estrogen modulates neuronal Bcl-xL expression and – amyloid-induced apoptosis: relevance to Alzheimer’s disease. J Neurochem 72:1552–1563PubMedCrossRefGoogle Scholar
  24. 24.
    Hu X-Y, Qin S, Lu Y-P, Ravid R, Swaab DF, Zhou JN (2003) Decreased estrogen receptor-alpha expression in hippocampal neurons in relation to hyperphosphorylated tau in Alzheimer patients. Acta Neuropathol 106:213–220PubMedCrossRefGoogle Scholar
  25. 25.
    Dubal DB, Shughrue PJ, Wilson ME, Merchenthaler I, Wise PM (1999) Estradiol modulates Bcl-2 in cerebral ischemia: a potential role for estrogen receptors. J Neurosci 19:6385–6393PubMedGoogle Scholar
  26. 26.
    Carswell HVO, Macrae IM, Gallagher L, Harrop E, Horsburgh KJ (2004) Neuroprotection by a selective estrogen receptor agonist in a mouse model of global ischemia. Am J Physiol Heart Circ Physiol 287:H1501–H1504PubMedCrossRefGoogle Scholar
  27. 27.
    Dubal DB, Zhu H, Yu J, Rau SW, Shughrue PJ, Merchenthaler I, Kindy MS, Wise PM (2001) Estrogen receptor alpha, not beta, is a critical link in estradiol-mediated protection against brain injury. Proc Natl Acad Sci USA 98:1952–1957PubMedCrossRefGoogle Scholar
  28. 28.
    Fitzpatrick JL, Mize AL, Wade CB, Harris JA, Shapiro RA, Dorsa DM (2002) Estrogen-mediated neuroprotection against beta-amyloid toxicity requires expression of estrogen receptor alpha or beta and activation of the MAPK pathway. J Neurochem 82:674–682PubMedCrossRefGoogle Scholar
  29. 29.
    Zhao L, Wu T-W, Brinton RD (2004) Estrogen receptor subtypes alpha and beta contribute to neuroprotection and increased Bcl-2 expression in primary hippocampal neurons. Brain Res 1010:22–34PubMedCrossRefGoogle Scholar
  30. 30.
    Douen AG, Akiyama K, Hogan MJ, Wang F, Dong L, Chow AK, Hakim A (2000) Preconditioning with cortical spreading depression decreases intraischemic cerebral glutamate levels and down-regulates excitatory amino acid transporters EAAT1 and EAAT2 from rat cerebral cortex plasma membranes. J Neurochem 75:812–818PubMedCrossRefGoogle Scholar
  31. 31.
    Romera C, Hurtado O, Botella SH, Lizasoain I, Cárdenas A, Fernández-Tomé P, Leza JC, Lorenzo P, Moro MA (2004) In vitro ischemic tolerance involves upregulation of glutamate transport partly mediated by the TACE/ADAM17-tumor necrosis factor-alpha pathway. J Neurosci 24:1350–1357PubMedCrossRefGoogle Scholar
  32. 32.
    Cimarosti H, Jones NM, O’Shea RD, Pow DV, Salbego C, Beart PM (2005) Hypoxic preconditioning in neonatal rat brain involves regulation of excitatory amino acid transporter 2 and estrogen receptor alpha. Neurosci Lett 385:52–57PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Helena Cimarosti
    • 1
    • 2
  • Ross D. O’Shea
    • 2
  • Nicole M. Jones
    • 2
  • Ana Paula Horn
    • 1
  • Fabrício Simão
    • 1
  • Lauren L. Zamin
    • 1
  • Melissa Nassif
    • 1
  • Rudimar Frozza
    • 1
  • Carlos Alexandre Netto
    • 1
  • Philip M. Beart
    • 2
  • Christianne Salbego
    • 1
  1. 1.Departamento de BioquímicaUniversidade Federal do Rio Grande do SulPorto AllegreBrazil
  2. 2.Brain Injury and Repair Program, Howard Florey InstituteUniversity of MelbourneMelbourneAustralia

Personalised recommendations