Neurochemical Research

, Volume 31, Issue 1, pp 71–79 | Cite as

Carbon Disulfide-Induced Changes in Cytoskeleton Protein Content of Rat Cerebral Cortex

  • Fuyong Song
  • Sufang Yu
  • Xiulan Zhao
  • Cuili Zhang
  • Keqin Xie


To investigate the mechanism of carbon disulfide-induced neuropathy, male wistar rats were administrated by gavage at dosage of 300 or 500 mg/kg carbon disulfide, five times per week for 12 weeks. By the end of the exposure, the animals produced a slight or moderate level of neurological deficits, respectively. Cerebrums of carbon disulfide-intoxicated rats and their age-matched controls were Triton-extracted and centrifuged at a high speed (100,000 × g) to yield a pellet fraction of NF polymer and a corresponding supernatant fraction, which presumably contained mobile monomer. Then, the contents of six cytoskeletal protein (NF-L, NF-M, NF-H, α-tubulin, β-tubulin, and β-actin) in both fractions were determined by immunoblotting. Results showed that the contents of the three neurofilament subunits in the pellet and the supernatant fraction decreased significantly regardless of dose levels (P < 0.01). As for microtubule proteins, in the pellet fraction of cerebrum, the levels of α-tubulin and β-tubulin demonstrated some inconsistent changes. However, in the supernatant fractions, the content of α-tubulin and β-tubulin increased significantly in both two dose groups (P < 0.01). In comparison to neurofilament and tubulin proteins, the content of β-actin changed less markedly, only the supernatant fraction of the high dose group displayed significant increase (P < 0.01), but the others remained unaffected. These findings suggested that the changes of cytoskeleton protein contents in rat cerebrum were associated with the intoxication of carbon disulfide, which might be involved in the development of carbon disulfide neurotoxicity.


Carbon disulfide cytoskeletal proteins distal axonpathy neurofilaments 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beauchamp, R. O., Bus, J. S., Popp, J. A., Boreiko, C. J., Goldberg, L. 1983Critical review of the literature on carbon disulfide toxicityCrit. Rev. Toxicol.11169278PubMedGoogle Scholar
  2. 2.
    Stetkiewicz, J., Wronska-Nofer, T. 1998Updating of hygiene standards for carbon disulfide based on health risk assessmentInt. J. Occup. Med. Environ. Hlth.11129143Google Scholar
  3. 3.
    Vigliani, E. C. 1954Carbon disulfide poisoning in viscose rayon factoriesBr. J. Ind. Med.11235244PubMedGoogle Scholar
  4. 4.
    Peters, H. A., Levine, R. L., Matthews, C. G., Chapman, L. J. 1988Extrapyramidal and other neurological manifestations associated with carbon disulfide fumigant exposureArch. Neurol.45537540PubMedGoogle Scholar
  5. 5.
    Chu, C. C., Huang, C. C., Chen, R. S., Shih, T. S. 1995Carbon disulfide induced polyneuropathy in viscose rayon workersOccup. Environ. Med.52404407PubMedGoogle Scholar
  6. 6.
    Huang, C. C. 2004Carbon disulfide neurotoxicity: Taiwan experienceActa Neurol. Taiwan1339PubMedGoogle Scholar
  7. 7.
    Gottfried, M. R., Graham, D. G., Morgan, M., Cases, H. W., Bus, J. S. 1985The morphology of carbon disulfide neurotoxicityNeurotoxicology68996PubMedGoogle Scholar
  8. 8.
    Spencer, P. S., Schaumburg, H. H. 1977Ultrastructural studies of the dying back process III. The evolution of experimental giant axonal degenerationJ. Neuropathol. Exp. Neurol.36276299PubMedGoogle Scholar
  9. 9.
    Graham, D. G., Amarnath, V., Valentine, W. M., Pyle, S. J., Anthony, D. C. 1995Pathogenetic studies of hexane and carbon disulfide neurotoxicityCrit. Rev. Toxicol.2591112PubMedGoogle Scholar
  10. 10.
    Lehning, E. J., Persaud, A., Dyer, K. R., Jortner, B. S., LoPachin, R. M. 1998Biochemical and morphologic characterization of acrylamide peripheral neuropathyToxicol. Appl. Pharmacol.151211221CrossRefPubMedGoogle Scholar
  11. 11.
    Gilioli, R., Bulgheroni, C., Bertazzi, P. A., Cirla, A. M., Tomasini, M., Cassitto, M. G., Jacovone, M. T. 1978Study of neurological and neurophysiological impairment in carbon disulphide workersMed. Lav.69130143PubMedGoogle Scholar
  12. 12.
    Vasilescu, C., Florescu, A. 1980Clinical and electrophysiological studies of carbon disulfide polyneuropathyJ. Neurol.2245970CrossRefPubMedGoogle Scholar
  13. 13.
    Herr, D. W., Vo, K. T., Morgan, D. L., Sills, R. C. 1998Carbon disulfide neurotoxicity in rats: VI. Electrophysiological examination of caudal tail nerve compound action potentials and nerve conduction velocityNeurotoxicology19129146PubMedGoogle Scholar
  14. 14.
    Spencer, P. S., Sabri, M. I., Schaumburg, H. H., Moore, C. L. 1979Does a defect of energy metabolism in the nerve fiber underlie axonal degeneration in polyneuropathies?Ann. Neurol.6501507Google Scholar
  15. 15.
    McKenna, M. J., DiStefano, V. 1977Carbon disulfide. II. A proposed mechanism for the action of carbon disulfide on dopamine beta-hydroxylaseJ. Pharmacol. Exp. Ther.202253266PubMedGoogle Scholar
  16. 16.
    Teisinger, J. 1974New advances in the toxicology of carbon disulfideAm. Ind. Hyg. Assoc. J.355561PubMedGoogle Scholar
  17. 17.
    Valentine, W. M., Amarnath, V., Graham, D. G., Morgan, D. L., Sills, R. C. 1997CS2-mediated cross-linking of erythrocyte spectrin and neurofilament protein: Dose response and temporal relationship to the formation of axonal swellingsToxicol. Appl. Pharmacol.14295105CrossRefPubMedGoogle Scholar
  18. 18.
    Gao, Y. H., Liang, Y. X., Fu, W. Z. 1998Effect of carbon disulfide on neurofilament and erythrocytic membrane structure in ratsChinese J. Ind. Med.11267270Google Scholar
  19. 19.
    LoPachin, R. M., He, D., Reid, M. L. 20052,5-Hexanedione-induced changes in the neurofilament subunit pools of rat peripheral nerveNeurotoxicology26229240CrossRefPubMedGoogle Scholar
  20. 20.
    LoPachin, R. M., He, D., Reid, M. L., Opanashuk, L. A. 20042,5-Hexanedione-induced changes in the monomeric neurofilament protein content of rat spinal cord fractionsToxicol. Appl. Pharmacol.1986173CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang, T. L., Zhao, X. L., Zhu, Z. P., Yu, L. H., Han, X. Y., Zhang, C. L., Xie, K. Q. 20052,5-Hexanedione induced decrease in cytoskeletal proteins of rat sciatic-tibial nerveNeurochem. Res.30177183CrossRefPubMedGoogle Scholar
  22. 22.
    Moser, V. C., Phillips, P. M., Morgan, D. L., Sills, R. C. 1998Carbon disulfide neurotoxicity in rats: VII. Behavioral evaluations using a functional observational batteryNeurotoxicology19147157PubMedGoogle Scholar
  23. 23.
    Tsuda, M., Tashiro, T., Komiya, Y. 1997Increased solubility of high molecular mass neurofilament subunit by suppression of dephosphorylation: Its relation to axonal transportJ. Neurochem.6825582565PubMedGoogle Scholar
  24. 24.
    Chiu, F. C., Norton, W. T. 1982Bulk preparation of CNS cytoskeleton and the separation of individual neurofilament proteins by gel filtration: Dye-binding characteristics and amino acid compositionsJ. Neurochem.3912521260PubMedGoogle Scholar
  25. 25.
    Shea, T. B., Sihag, R. K., Nixon, R. A. 1990Dynamics of phosphorylation and assembly of the high molecular weight neurofilament subunit in NB2a/d1 neuroblastomaJ. Neurochem.5517841792PubMedGoogle Scholar
  26. 26.
    Shea, T. B., Dahl, D. C., Nixon, R. A., Fischer, I. 1997Triton-soluble phosphovariants of the heavy neurofilament subunit in developing and mature mouse central nervous systemJ. Neurosci. Res.48515523PubMedGoogle Scholar
  27. 27.
    Cohlberg, J. A., Hajarian, H., Tran, T., Alipourjeddi, P., Noveen, A. 1995Neurofilament protein heterotetramers as assembly intermediatesJ. Biol. Chem.27093349339PubMedGoogle Scholar
  28. 28.
    Lee, M. K., Xu, Z., Wong, P. C., Cleveland, D. W. 1993Neurofilaments are obligate heteropolymers in vivoJ. Cell. Biol.12213371350CrossRefPubMedGoogle Scholar
  29. 29.
    Nixon, R. A., Lewis, S. E. 1986Differential turnover of phosphate groups on neurofilament subunits in mammalian neurons in vivoJ. Biol. Chem.2611629816301PubMedGoogle Scholar
  30. 30.
    Nixon, R. A., Lewis, S. E., Marotta, C. A. 1987Post-translational modification of neurofilament proteins by phosphate during axoplasmic transport in retinal ganglion cell neuronsJ. Neurosci.711451158PubMedGoogle Scholar
  31. 31.
    Lee, M. K., Cleveland, D. W. 1994Neurofilament function and dysfunction: Involvement in axonal growth and neuronal diseaseCurr. Opin. Cell. Biol.63440CrossRefPubMedGoogle Scholar
  32. 32.
    Sills, R. C., Harry, G. J., Morgan, D. L., Valentine, W. M., Graham, D. G. 1998Carbon disulfide neurotoxicity in rats: V. Morphology of axonal swelling in the muscular branch of the posterior tibial nerve and spinal cordNeurotoxicology19117127PubMedGoogle Scholar
  33. 33.
    Hirokawa, N., Terada, S., Funakoshi, T., Takeda, S. 1997Slow axonal transport: The subunit transport modelCell Biol.7384388Google Scholar
  34. 34.
    Yabe, J. T., Chan, W. K.-H., Chylinski, T., Lee, S., Pimenta, A., Shea, T. B. 2001The predominant form in which neurofilament subunits undergo axonal transport varies during axonal initiation, elongation and maturationCell Motil. Cytoskeleton486183CrossRefPubMedGoogle Scholar
  35. 35.
    Hirokawa, N., Takeda, S. 1998Gene targeting studies begin to reveal the function of neurofilament proteinsJ. Cell. Biol.14314CrossRefPubMedGoogle Scholar
  36. 36.
    Elder, G. A., Friedrich, V. L., Bosco, P., Kang, C., Gourov, A., Tu, P. H., Lee, V. M., Lazzarini, R. A. 1998Absence of the mid-sized neurofilament subunit decreases axonal calibers, levels of light neurofilament (NF-L), and neurofilament contentJ. Cell. Biol.141727739CrossRefPubMedGoogle Scholar
  37. 37.
    Zhu, Q., Lindenbaum, M., Levavasseur, F., Jacomy, H., Julien, J. P. 1998Disruption of the NF-H gene increases axonal microtubule content and velocity of neurofilament transport: Relief of axonopathy resulting from the toxin beta,beta′-iminodipropionitrileJ. Cell. Biol.143183193CrossRefPubMedGoogle Scholar
  38. 38.
    Watson, D. F., Fittro, K. P., Hoffman, P. N., Griffin, J. W. 1991Phosphorylation-related immunoreactivity and the rate of transport of neurofilaments in chronic 2,5-hexanedione intoxicationBrain Res.539103109CrossRefPubMedGoogle Scholar
  39. 39.
    Sakaguchi, T., Okada, M., Kitamura, T., Kawasaki, K. 1993Reduced diameter and conduction velocity of myelinated fibers in the sciatic nerve of a neurofilament-dificient mutant quailNeurosci. Lett.1536568CrossRefPubMedGoogle Scholar
  40. 40.
    Opanashuk, L. A., He, D. K., Lehning, E. J., Lopachin, R. M. 2001Diketone peripheral neuropathy III. Neurofilament gene expressionNeurotoxicology22215220CrossRefPubMedGoogle Scholar
  41. 41.
    Gupta, R. P., Abou-Donia, M. B. 1996Alterations in the neutral proteinase activities of central and peripheral nervous systems of acrylamide-, carbon disulfide-, or 2,5-hexanedione-treated ratsMol. Chem. Neuropathol.295366PubMedGoogle Scholar
  42. 42.
    Pant, H. C. 1988Dephosphorylation of neurofilament proteins enhances their susceptibility to degradation by calpainBiochem. J.256665668PubMedGoogle Scholar
  43. 43.
    Perrone Capano, C., Pernas-Alonso, R., Porzio, U. 2001Neurofilament homeostasis and motoneurone degenerationBioessays232433PubMedGoogle Scholar
  44. 44.
    Rao, M. V., Campbell, J., Yuan, A., Kumar, A., Gotow, T., Uchiyama, Y., Nixon, R. A. 2003The neurofilament middle molecular mass subunit carboxyl-terminal tail domains is essential for the radial growth and cytoskeletal architecture of axons but not for regulating neurofilament transport rateJ. Cell. Biol.16310211031CrossRefPubMedGoogle Scholar
  45. 45.
    Hoffman, P. N., Cleveland, D. W. 1988Neurofilament and tubulin expression recapitulates the developmental program during axonal regeneration: Induction of a specific b-tubulin isotypeProc. Natl. Acad. Sci. USA8545304533PubMedGoogle Scholar
  46. 46.
    Moskowitz, P. F., Smith, R., Pickett, J., Frankfurter, A., Oblinger, M. M. 1993Expression of the class III b-tubulin gene during axonal regeneration of rat dorsal root ganglion neuronsJ. Neurosci. Res.34129134CrossRefPubMedGoogle Scholar
  47. 47.
    Miller, F. D., Tetzlaff, W., Bisby, M. A., Fawcett, J. W., Milner, R. J. 1989Rapid induction of the major embryonic a-tubulin mRNA, T alpha1, during nerve regeneration in adult ratsJ. Neurosci.914521463PubMedGoogle Scholar
  48. 48.
    Liuzzi, F. J., Bufton, S. M., Vinik, A. I. 1998Streptozotocin-induced diabetes mellitus causes changes in primary sensory neuronal cytoskeletal mRNA levels that mimic those caused by axotomyExp. Neurol.154381388CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Fuyong Song
    • 1
  • Sufang Yu
    • 1
  • Xiulan Zhao
    • 1
  • Cuili Zhang
    • 1
  • Keqin Xie
    • 1
  1. 1.Institute of ToxicologyShandong UniversityJinanP. R. China

Personalised recommendations