Neurochemical Research

, Volume 30, Issue 9, pp 1123–1131 | Cite as

Glutaric Acid Administration Impairs Energy Metabolism in Midbrain and Skeletal Muscle of Young Rats

  • Gustavo da C. Ferreira
  • Carolina M. Viegas
  • Patrícia F. Schuck
  • Anelise Tonin
  • César A. J. Ribeiro
  • Daniella de M. Coelho
  • Teresa Dalla-Costa
  • Alexandra Latini
  • Ângela T. S. Wyse
  • Clovis M. D. Wannmacher
  • Carmen R. Vargas
  • Moacir Wajner


A genetic mice model of glutaric acidemia type I (GAI) has recently been developed, however affected animals do not develop the striatal damage characteristic of patients with this disorder. Therefore, the initial aim of the present work was to induce high glutaric acid (GA) concentrations in rat brain similar to those found in GAI patients through subcutaneous injection of GA. High brain GA concentrations (up to 0.60 μmol/g ≅ 0.60mM) were achieved by a single subcutaneous injection of saline-buffered GA (5 μmol/g body weight) to Wistar rats of 7–22 days of life. GA brain levels were about 10-fold lower than in plasma and 5-fold lower than in skeletal and cardiac muscles, indicating that the permeability of the blood brain barrier to GA is low. We also aimed to use this model to investigate neurochemical parameters in the animals. Thus, we evaluated the effect of this model on energy metabolism parameters in midbrain, in which the striatum is localized, as well as in peripheral tissues (skeletal and cardiac muscles) of 22-day-old rats. Control rats were treated with saline in the same volumes. We verified that CO2 production from glucose was not altered in midbrain of rats treated with GA, indicating a normal functioning of the tricarboxylic acid cycle. Creatine kinase activity was also not changed in midbrain, skeletal and cardiac muscles. In contrast, complex I–III activity of the respiratory chain was inhibited in midbrain (25%), while complexes I–III (25%) and II–III (15%) activities were reduced in skeletal muscle, with no alterations found in cardiac muscle. These data indicate that GA administration moderately impairs cellular energy metabolism in midbrain and skeletal muscle of young rats.

Key words

CO2 production and energy metabolism creatine kinase  glutaric acid respiratory chain complexes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goodman, S. I., Norenberg, M. D., Shikes, R. H., Breslich, D. J., Moe, P. G. 1977Glutaric aciduria: Biochemical and morphologic considerationsJ. Pediatr.90746750PubMedGoogle Scholar
  2. 2.
    Strauss, K. A., Morton, D. H. 2003Type I glutaric aciduria, part 2: A model of acute striatal necrosisAm. J. Med. Genet.1215370Google Scholar
  3. 3.
    Funk, C. B., Prasad, A. N., Frosk, P., Sauer, S., Kölker, S., Greenberg, C. R., Del Bigio, M. R. 2005Neuropathological, biochemical and molecular findings in a glutaric acidemia type 1 cohortBrain128711722CrossRefPubMedGoogle Scholar
  4. 4.
    Brismar, J., Ozand, P. T. 1995CT and MR of the brain in glutaric acidemia type I: A review of 59 published cases and a report of 5 new patientsAm. J. Neuroradiol.16675683PubMedGoogle Scholar
  5. 5.
    Neumaier-Probst, E., Harting, I., Seitz, A., Ding, C., Kölker, S. 2004Neuroradiological findings in glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency)J. Inherit. Metab. Dis.27869876CrossRefPubMedGoogle Scholar
  6. 6.
    Hoffmann, G. F., Meier-Augenstein, W., Stockler, S., Surtees, R., Rating, D., Nyhan, W. L. 1993Physiology and pathophysiology of organic acids in cerebrospinal fluidJ. Inherit. Metab. Dis.16648669CrossRefPubMedGoogle Scholar
  7. 7.
    Flott-Rahmel, B., Falter, C., Schluff, P., Fingerhut, R., Christensen, E., Jakobs, C., Musshoff, U., Fautek, J. D., Deufel, T., Ludolph, A., Ullrich, K. 1997Nerve cell lesions caused by 3-hydroxyglutaric acid: A possible mechanism for neurodegeneration in glutaric acidaemia IJ. Inherit. Metab. Dis.20387390CrossRefPubMedGoogle Scholar
  8. 8.
    Lima, T. T., Begnini, J., Bastiani, J., Fialho, D. B., Jurach, A., Ribeiro, M. C., Wajner, M., Mello, C. F. 1998Pharmacological evidence for GABAergic and glutamatergic involvement in the convulsant and behavioral effects of glutaric acidBrain Res.8025560CrossRefPubMedGoogle Scholar
  9. 9.
    Kölker, S., Ahlemeyer, B., Krieglstein, J., Hoffmann, G. F. 19993-Hydroxyglutaric and glutaric acids are neurotoxic through NMDA receptors in vitroJ. Inherit. Metab. Dis.22259262PubMedGoogle Scholar
  10. 10.
    Kölker, S., Ahlemeyer, B., Krieglstein, J., Hoffmann, G. F. 2001aContribution of reactive oxygen species to 3-hydroxyglutarate neurotoxicity in primary neuronal cultures from chick embryo telencephalonsPediatr. Res.507682Google Scholar
  11. 11.
    Kölker, S., Ahlemeyer, B., Huhne, R., Mayatepek, E., Krieglstein, J., Hoffmann, G. F. 2001bPotentiation of 3-hydroxyglutarate neurotoxicity following induction of astrocytic iNOS in neonatal rat hippocampal culturesEur. J. Neurosci.1321152122Google Scholar
  12. 12.
    Kölker, S., Okun, J. G., Ahlemeyer, B., Wyse, A. T., Horster, F., Wajner, M., Kohlmuller, D., Mayatepek, E., Krieglstein, J., Hoffmann, G. F. 2002Chronic treatment with glutaric acid induces partial tolerance to excitotoxicity in neuronal cultures from chick embryo telencephalonsJ. Neurosci. Res.68424431PubMedGoogle Scholar
  13. 13.
    Ullrich, K., Flott-Rahmel, B., Schluff, P., Musshoff, U., Das, A., Lucke, T., Steinfeld, R., Christensen, E., Jakobs, C., Ludolph, A., Neu, A., Roper, R. 1999Glutaric aciduria type I: Pathomechanisms of neurodegenerationJ. Inherit. Metab. Dis.22392403CrossRefPubMedGoogle Scholar
  14. 14.
    Porciuncula, L. O., Emanuelli, T., Tavares, R. G., Schwarzbold, C., Frizzo, M. E., Souza, D. O., Wajner, M. 2004Glutaric acid stimulates glutamate binding and astrocytic uptake and inhibits vesicular glutamate uptake in forebrain from young ratsNeurochem. Int.4510751086CrossRefPubMedGoogle Scholar
  15. 15.
    Bjugstad, K. B., Zawada, W. M., Goodman, S., Free, C. R. 2001IGF-1 and bFGF reduce glutaric acid and 3-hydroxyglutaric acid toxicity in striatal culturesJ. Inherit. Metab. Dis.24631647CrossRefPubMedGoogle Scholar
  16. 16.
    Mello, C. F., Kölker, S., Ahlemeyer, B., Souza, F. R., Fighera, M. R., Mayatepek, E., Krieglstein, J., Hoffmann, G. F., Wajner, M. 2001Intrastriatal administration of 3-hydroxyglutaric acid induces convulsions and striatal lesions in ratsBrain Res.9167075PubMedGoogle Scholar
  17. 17.
    Frizzo, M. E., Schwarzbold, C., Porciuncula, L. O., Dalcin, K. B., Rosa, R. B., Ribeiro, C. A., Souza, D. O., Wajner, M. 20043-hydroxyglutaric acid enhances glutamate uptake into astrocytes from cerebral cortex of young ratsNeurochem. Int.44345353CrossRefPubMedGoogle Scholar
  18. 18.
    Rosa, R. B., Schwarzbold, C., Dalcin, K. B., Ghisleni, G. C., Ribeiro, C. A., Moretto, M. B., Frizzo, M. E., Hoffmann, G. F., Souza, D. O., Wajner, M. 2004Evidence that 3-hydroxyglutaric acid interacts with NMDA receptors in synaptic plasma membranes from cerebral cortex of young ratsNeurochem. Int.4510871094CrossRefPubMedGoogle Scholar
  19. 19.
    Muhlhausen, C., Ergun, S., Strauss, K. A., Koeller, D. M., Crnic, L., Woontner, M., Goodman, S. I., Ullrich, K., Braulke, T. 2004Vascular dysfunction as an additional pathomechanism in glutaric aciduria type IJ. Inherit. Metab. Dis.27829834PubMedGoogle Scholar
  20. 20.
    Varadkar, S., Surtees, R. 2004Glutaric aciduria type I and kynurenine pathway metabolites: A modified hypothesisJ. Inherit. Metab. Dis.27835842CrossRefPubMedGoogle Scholar
  21. 21.
    Koeller, D. M., Woontner, M., Crnic, L. S., Kleinschmidt-DeMasters, B., Stephens, J., Hunt, E. L., Goodman, S. I. 2002Biochemical, pathologic and behavioral analysis of a mouse model of glutaric acidemia type IHum. Mol. Genet.11347357CrossRefPubMedGoogle Scholar
  22. 22.
    Koeller, D. M., Sauer, S., Wajner, M., Mello, C. F., Goodman, S. I., Woontner, M., Muhlhausen, C., Okun, J. G., Kölker, S. 2004Animal models for glutaryl-CoA dehydrogenase deficiencyJ. Inherit. Metab. Dis.27813818CrossRefPubMedGoogle Scholar
  23. 23.
    Sweetman, L. 1991Organic acid analysisHommes, F. A. eds. Techniques in Diagnostic Human Biochemical Genetics. A Laboratory ManualWiley-LissNew York143176Google Scholar
  24. 24.
    Dutra-Filho, C. S., Wajner, M., Wannmacher, C. M., Gassen, E., Candiago, R. H., Wilhelms, A. M., Malfussi, H. F. 19952-Hydroxybutyrate and 4-hydroxybutyrate inhibit CO2 formation from labeled substrates by rat cerebral cortexBiochem. Soc. Trans.23228SPubMedGoogle Scholar
  25. 25.
    Fischer, J. C., Ruitenbeek, W., Berden, J. A., Trijbels, J. M., Veerkamp, J. H., Stadhouders, A. M., Sengers, R. C., Janssen, A. J. 1985Differential investigation of the capacity of succinate oxidation in human skeletal muscleClin. Chim. Acta.1532336CrossRefPubMedGoogle Scholar
  26. 26.
    Rustin, P., Chretien, D., Bourgeron, T., Gerard, B., Rotig, A., Saudubray, J. M., Munnich, A. 1994Biochemical and molecular investigations in respiratory chain deficienciesClin. Chim. Acta.2283551CrossRefPubMedGoogle Scholar
  27. 27.
    Schapira, A. H., Cooper, J. M., Dexter, D., Clark, J. B., Jenner, P., Marsden, C. D. 1990Mitochondrial complex I deficiency in Parkinson’s diseaseJ. Neurochem.54823827PubMedGoogle Scholar
  28. 28.
    da Silva, C. G., Ribeiro, C. A., Leipnitz, G., Dutra-Filho, C. S., Wyse, A. A., Wannmacher, C. M., Sarkis, J. J., Jakobs, C., Wajner, M. 2002Inhibition of cytochrome c oxidase activity in rat cerebral cortex and human skeletal muscle by D-2-hydroxyglutaric acid in vitroBiochim. Biophys. Acta.15868191PubMedGoogle Scholar
  29. 29.
    Hughes, B. P. 1962A method for the estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological seraClin. Chim. Acta.7597603CrossRefPubMedGoogle Scholar
  30. 30.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. 1951Protein measurement with the Folin phenol reagentJ.␣Biol. Chem.193265275PubMedGoogle Scholar
  31. 31.
    Dutra, J. C., Wajner, M., Wannmacher, C. M., Wannmacher, L. E., Pires, R. F., Rosa-Junior, A. 1991Effect of postnatal methylmalonate administration on adult rat behaviorBraz. J. Med. Biol. Res.24595605PubMedGoogle Scholar
  32. 32.
    Mello, C. F., Somer, J. E., Tavaroni, V., Graciolli, R., Wu, V., Torres, G., Aguiar, F., Wajner, M., Wannmacher, C. M. 1994Effects of postnatal methylmalonate administration on neurobehavioral development of ratsBraz. J. Med. Biol. Res.27655661PubMedGoogle Scholar
  33. 33.
    Mello, C. F., Feksa, L., Brusque, A. M., Wannmacher, C. M., Wajner, M. 1999Chronic early leucine administration induces behavioral deficits in ratsLife Sci.65747755CrossRefPubMedGoogle Scholar
  34. 34.
    Brusque, A. M., Mello, C. F., Buchanan, D. N., Terracciano, S. T., Rocha, M. P., Vargas, C. R., Wannmacher, C. M., Wajner, M. 1999Effect of chemically induced propionic acidemia on neurobehavioral development of ratsPharmacol. Biochem. Behav.64529534CrossRefPubMedGoogle Scholar
  35. 35.
    Haworth, J. C., Booth, F. A., Chudley, A. E., Groot, G. W., Dilling, L. A., Goodman, S. I., Greenberg, C. R., Mallory, C. J., McClarty, B. M., Seshia, S. S.,  et al. 1991Phenotypic variability in glutaric aciduria type I: Report of fourteen cases in five Canadian Indian kindredsJ. Pediatr.1185258PubMedGoogle Scholar
  36. 36.
    Lund, T. M., Christensen, E., Kristensen, A. S., Schousboe, A., Lund, A. M. 2004On the neurotoxicity of glutaric, 3-hydroxyglutaric, and trans-glutaconic acids in glutaric acidemia type 1J. Neurosci. Res.77143147CrossRefPubMedGoogle Scholar
  37. 37.
    Silva, C. G., Silva, A. R., Ruschel, C., Helegda, C., Wyse, A. T., Wannmacher, C. M., Dutra-Filho, C. S., Wajner, M. 2000Inhibition of energy production in vitro by glutaric acid in cerebral cortex of young ratsMetab. Brain Dis.15123131PubMedGoogle Scholar
  38. 38.
    Oliveira Marques, F., Hagen, M. E., Pederzolli, C. D., Sgaravatti, A. M., Durigon, K., Testa, C. G., Wannmacher, C. M., Souza Wyse, A. T., Wajner, M., Dutra-Filho, C. S. 2003Glutaric acid induces oxidative stress in brain of young ratsBrain Res.964153158PubMedGoogle Scholar
  39. 39.
    Hillered, L., Ernster, L. 1983Respiratory activity of isolated rat brain mitochondria following in vitro exposure to oxygen radicalsJ. Cereb. Blood Flow Metab.3207214PubMedGoogle Scholar
  40. 40.
    Zhang, Y., Marcillat, O., Giulivi, C., Ernster, L., Davies, K. J. 1990The oxidative inactivation of mitochondrial electron transport chain components and ATPaseJ. Biol. Chem.2651633016336PubMedGoogle Scholar
  41. 41.
    Melov, S., Coskun, P., Patel, M., Tuinstra, R., Cottrell, B., Jun, A. S., Zastawny, T. H., Dizdaroglu, M., Goodman, S. I., Huang, T. T., Miziorko, H., Epstein, C. J., Wallace, D. C. 1999Mitochondrial disease in superoxide dismutase 2 mutant miceProc. Natl. Acad. Sci. USA96846851CrossRefPubMedGoogle Scholar
  42. 42.
    Rafique, R., Schapira, A. H., Cooper, J. M. 2001Sensitivity of respiratory chain activities to lipid peroxidation: Effect of vitamin E deficiencyBiochem. J.357887892CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Gustavo da C. Ferreira
    • 1
  • Carolina M. Viegas
    • 1
  • Patrícia F. Schuck
    • 1
  • Anelise Tonin
    • 1
  • César A. J. Ribeiro
    • 1
  • Daniella de M. Coelho
    • 2
  • Teresa Dalla-Costa
    • 3
  • Alexandra Latini
    • 1
  • Ângela T. S. Wyse
    • 1
  • Clovis M. D. Wannmacher
    • 1
  • Carmen R. Vargas
    • 1
    • 2
    • 3
  • Moacir Wajner
    • 1
    • 2
    • 4
  1. 1.Departamento de BioquímicaICBS, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Serviço de Genética MédicaHospital de Clínicas de Porto AlegrePorto AlegreBrazil
  3. 3.Faculdade de FarmáciaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  4. 4.Universidade Luterana do BrasilCanoasBrazil

Personalised recommendations