Neurochemical Research

, Volume 30, Issue 6–7, pp 713–719 | Cite as

Neurochemical Evidence for Agmatine Modulation of 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP) Neurotoxicity

  • Gad M. Gilad
  • Varda H. Gilad
  • John P. M. Finberg
  • Jose M. Rabey


Agmatine treatment is known to exert neuroprotective effects in several models of neurotoxic and ischemic brain and spinal cord injuries. Here we sought to find out whether agmatine treatment would also prove to be neuroprotective in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson’s disease. Concomitant daily treatment (intraperitoneal injections) with agmatine (100 mg/kg for 5 days) and MPTP (40 mg/kg for 2 days) exacerbated MPTP-related toxicity as evidenced by a larger reduction in dopamine uptake into striatal synaptosomes (42.4% as compared to 58.3% of control, respectively). In contrast, agmatine treatment commencing after MPTP, produced partial protection (31%) against MPTP dopaminergic toxicity. The findings implicate agmatine in mechanisms regulating MPTP neurotoxicity, but underscore the characteristic neuroprotective efficacy of agmatine when applied after the insult.

Key words

Agmatine MPTP neuroprotection neurotoxicity Parkinson’s disease 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tabor, C. W., Tabor, H. 1984PolyaminesAnnu. Rev. Biochem.53749790CrossRefPubMedGoogle Scholar
  2. 2.
    Li, G., Regunathan, S., Barrow, C. J., Eshraghi, J., Cooper, R., Reis, D. J. 1994Agmatine: An endogenous clonidine-displacing substance in the brainScience263966969PubMedGoogle Scholar
  3. 3.
    Fairbanks, C. A., Schreiber, K. L., Brewer, K. L., Yu, C.-G., Stone, L. S., Kitto, K. F., Nguyen, H. O., Grocholski, B. M., Shoeman, D. W., Kehl, L. J., Regunathan, S., Reis, D. J., Yezierski, R. P., Wilcox, G. L. 2000Agmatine reverses pain induced by inflammation, neuropathy, and spinal cord injuryProc. Natl. Acad. Sci. USA971058410589CrossRefPubMedGoogle Scholar
  4. 4.
    Gilad, G. M., Gilad, V. H., Rabey, J. M. 1996Arginine and ornithine decarboxylation in rodent brain; coincidental changes during development and after ischemiaNeurosci. Lett.2163336CrossRefPubMedGoogle Scholar
  5. 5.
    Loring, R. H. 1990Agmatine acts as an antagonist of neuronal nicotinic receptorsBr. J. Pharmacol.99207211PubMedGoogle Scholar
  6. 6.
    Olmos, G., DeGregorio-Rocasolano, N., Paz Regalado, M., Casull, T., Assumpicio Boronat, M., Trullas, R., Villarroel, A., Lerma, J., Garcia-Sevilla, J. A. 1999Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptorBrit. J. Pharmacol.12713171326CrossRefGoogle Scholar
  7. 7.
    Pinthong, D., Hussain, J. F., Kendall, D. A., Wilson, V. G. 1995Comparison of the interaction of agmatine and crude methanolic extracts of bovine lung and brain with alpha(2)-adrenergic binding sitesBrit. J. Pharmacol.115689695Google Scholar
  8. 8.
    Reis, D. J., Regunathan, S. 1998Agmatine: A novel neurotransmitter?Adv.42645649Google Scholar
  9. 9.
    Yang, X. C., Reis, D. J. 1999Agmatine selectively blocks the N-methyl-D-aspartate subclass of glutamate receptor channels in rat hippocampal neuronsJ. Pharmacol. Exp. Therap.288544549Google Scholar
  10. 10.
    Shepherd, R. M., Hashmi, M. N., Kane, C., Squires, P. E., Dunne, M. J. 1996Elevation of cytosolic calcium by imidazolines in mouse islets of Langerhans: Implications for stimulus-response coupling of insulin releaseBrit. J. Pharmacol.119911916Google Scholar
  11. 11.
    Weng, X.-C., Gai, X.-D., Zeng, J.-Q., Li, J. 2003Agmatine blocked voltage-gated calcium channel in cultured␣rat hippocampal neuronsActa Pharmacol. Sinica24746750Google Scholar
  12. 12.
    Auguet, M., Viossat, I., Marin, J. G., Chabrier, P. E. 1995Selective inhibition of inducible nitric oxide synthase by agmatineJap. J. Pharmacol.69285287PubMedGoogle Scholar
  13. 13.
    Galea, E., Regunathan, S., Eliopoulus, V., Feinstein, D. L., Reis, D. J. 1996Inhibition of mammalian nitric oxide synthases by agmatine, an endogenous polyamine formed by decarboxylation of arginineBiochem. J.316247249PubMedGoogle Scholar
  14. 14.
    Gilad, G. M., Wollman, Y., Iaina, A., Rabey, J. M., Chernihovsky, T., Gilad, V. H. 1996Metabolism of agmatine into urea but not into nitric oxide in rat brainNeuroReport717301732PubMedGoogle Scholar
  15. 15.
    Komori, Y., Guillermo, C. W., Fukuto, J. M. 1994Inhibition of purified nitric oxide synthase from rat cerebellum and macrophage by L-arginine analogsArch. Biochem. Biophys.315213218CrossRefPubMedGoogle Scholar
  16. 16.
    Murayama, T., Tsai, S-.C., Adamik, R., Moss, J., Vaughan, M. 1993Effects of temperature on ADP-ribosylation factor stimulation of cholera toxin activityBiochemistry32561567CrossRefPubMedGoogle Scholar
  17. 17.
    Weitzel, G., Pfeiffer, B., Stock, W. 1980Insulin-like effects of agmatine derivatives in adipocytes, H.-S. ZPhysiol. Chem.3615160Google Scholar
  18. 18.
    Gilad, G. M., Gilad, V. H. 1992Commentary: Polyamines in neurotrauma: ubiquitous molecules in search of a functionBiochem. Pharmacol.44401407CrossRefPubMedGoogle Scholar
  19. 19.
    Marx, M., Trittenwein, G., Aufricht, C., Hoeger, H., Lubec, B. 1995Agmatine and spermidine reduce collagen accumulation in kidneys of diabetic db/db miceNephron69155158PubMedGoogle Scholar
  20. 20.
    Vlassara, H., Bocala, R., Striker, L. 1994Pathogenic effects of advanced glycosylation: biochemical, biological, and clinical implications for diabetes and agingLab. Invest.70138151PubMedGoogle Scholar
  21. 21.
    Gilad, G. M., Gilad, V. H. 2000Accelerated functional recovery and neuroprotection by agmatine after spinal cord ischemia in ratsNeurosci Lett.29697100CrossRefPubMedGoogle Scholar
  22. 22.
    Gilad, G. M., Salame, K., Rabey, J. M., Gilad, V. H. 1995Agmatine treatment is neuroprotective in rodent brain injury modelsLife Sci.58PL41PL46CrossRefGoogle Scholar
  23. 23.
    Kim, J. H., Chun, H., Yenari, M., Giffard, R.G., Lee, W.T., Park, K.A., and Lee, J.E. 2002. Neuroprotective effect of agmatine on the cortical neurons in vitro ischemia-like condition and in vivo MCAO model of ischemia. Soc. Neurosci. Abst. Online Program No.: 391.12.Google Scholar
  24. 24.
    Feng, Y. Z., Piletz, J. E., LeBlanc, M. H. 2002Agmatine suppresses nitric oxide production and attenuates hypoxic-ischemic brain injury in neonatal ratsPediat. Res52606611CrossRefPubMedGoogle Scholar
  25. 25.
    Pfeiffer, B., Sarrazin, W., Weitzel, G. 1981Insulin-like effects of agmatine in vitro and in vivo H.-S. ZPhysiol. Chem.36213311337Google Scholar
  26. 26.
    Sener, A., Lebrun, P., Blachier, F., Malaisse, W. J. 1988Stimulus-secretion coupling of arginine-induced insulin release. Insulinotropic action of agmatineBiochem. Pharmacol.38327330CrossRefGoogle Scholar
  27. 27.
    Raasch, W., Schafer, U., Chun, J., Dominiak, P. 2001Biological significance of agmatine, an endogenous ligand at imidazoline binding sitesJ. Pharmacol.133755780Google Scholar
  28. 28.
    Sun, M. K., Regunathan, S., Reis, D. J. 1995Cardiovascular response to agmatine, a clonidine-displacing substance, in anesthetized ratClin. Exp. Hypertens.17115128PubMedGoogle Scholar
  29. 29.
    AriciogluKartal, F., Uzbay, I. T. 1997Inhibitory effect of agmatine on naloxone-precipitated abstinence syndrome in morphine dependent ratsLife Sci.6117751781CrossRefPubMedGoogle Scholar
  30. 30.
    Kolesnikov, Y., Jain, S., Pasternak, G. W. 1996Modulation of opioid analgesia by agmatineEur. J. Pharmacol.2961722CrossRefPubMedGoogle Scholar
  31. 31.
    Molderings, G. J., Heinen, A., Menzel, S., Lubbecke, F., Homann, J., Gothert, M. 2003Gastrointestinal uptake of agmatine: Distribution in tissues and organs and pathophysiologic relevanceAnn. NY Acad. Sci.10094451CrossRefPubMedGoogle Scholar
  32. 32.
    Piletz, J. E., May, P. J., Wang, G., Zhu, H. 2003Agmatine crosses the blood–brain barrierAnn. NY Acad. Sci.10094451CrossRefPubMedGoogle Scholar
  33. 33.
    Regunathan, S., Youngson, C., Raasch, W., Wang, H., Reis, D. J. 1996Imidazoline receptors and agmatine in blood vessels: a novel system inhibiting vascular smooth muscle proliferationJ. Pharmacol. Exp. Ther.27612721282PubMedGoogle Scholar
  34. 34.
    Molderings, G. J., Kribben, B., Heinen, A., Schroder, D., Bruss, M., Gothert, M. 2004Intestinal tumor and agmatine (decarboxylated arginine): Low content in colon carcinoma tissue specimens and inhibitory effect on tumor cell proliferation in vitroCancer101858868CrossRefPubMedGoogle Scholar
  35. 35.
    Kopin, I. J. 1987MPTP: An industrial chemical and contaminant of illicit narcotics stimulates a new era in research on Parkinson’s diseaseEnviron. Health Perspect.754551PubMedGoogle Scholar
  36. 36.
    Speciale, S. G. 2002MPTP. Insights into parkinsonian degenerationNeurotoxicol. Teratol.24607620CrossRefPubMedGoogle Scholar
  37. 37.
    Smeyne, R. J., Jackson-Lewis, V. 2005The MPTP model of Parkinson’s diseaseMol. Brain Res.1345766CrossRefPubMedGoogle Scholar
  38. 38.
    Gilad, G. M., Reis, D. J. 1979Collateral sprouting in central mesolimbic dopamine neurons: Biochemical and immunocytochemical evidence of changes in the activity and distribution of tyrosine hydroxylase in terminal fields and in cell bodies of A10 neuronsBrain Res.1601736CrossRefPubMedGoogle Scholar
  39. 39.
    Gilad, G. M., Gilad, V. H. 1987Age-related reductions in brain cholinergic and dopaminergic indices in two rat strains differing in longevityBrain Res.408247250CrossRefPubMedGoogle Scholar
  40. 40.
    Tipton, K. F., Youdim, M. B. H. 1983The assay of monoamine oxidase activityParvez, S.Nagatsu, T.Nagatsu, I.Parvez, H. eds. Methods in Biogenic Amine ResearchElsevierAmsterdam441467Google Scholar
  41. 41.
    O’carroll, A. M., Fowler, C. J., Phillip, J. P., Tobia, I., Tipton, K. F. 1983The deamination of dopamine by human brain monoamine oxidase. Specificity for the two forms in seven brain regionsNaunyn Schmiedebergs Arch. Pharmacol.322198207CrossRefPubMedGoogle Scholar
  42. 42.
    Heikkila, R. E., Manzino, L., Cabbat, F. S., Duvoisin, R.␣C 1984Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine by monoamine oxidase inhibitorsNature311467469CrossRefPubMedGoogle Scholar
  43. 43.
    Javitch, J. A., D’Amato, R. J., Strittmatter, S. M., Snyder, S. H. 1985Parkinsonism inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: uptake of the metabolite N-methyl-4-phenyl-pyridinium by dopamine neurons explain selective toxicityProc. Natl. Acad. Sci. USA8221732177PubMedGoogle Scholar
  44. 44.
    Cleeter, M. W., Cooper, J. M., Schapira, A. H. 1992Irreversible inhibition of mitochondrial complex I by 1-methyl-4-phenylpyridinium: evidence for free radical involvementJ. Neurochem.58786789PubMedGoogle Scholar
  45. 45.
    Wu, D. C., Teismann, P., Tieu, K., Vila, M., Jackson-Lewis, V., Ischiropoulos, H., Przedborski, S. 2003NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine model of Parkinson’s diseaseProc. Natl. Acad. Sci. USA10061456150CrossRefPubMedGoogle Scholar
  46. 46.
    Przedborski, S., Vila, M. 20031-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine mouse model: A tool to explore the pathogenesis of Parkinson’s diseaseAnn. NY Acad. Sci.991189198PubMedGoogle Scholar
  47. 47.
    Grundemann, D., Hahne, C., Berkels, R., Schomig, E. 2003Agmatine is efficiently transported by non-neuronal monoamine transporters extraneuronal monoamine transporter (EMT) and organic cation transporter 2 (OCT2)J. Pharmacol. Exp.Ther.304810817CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Gad M. Gilad
    • 1
    • 2
  • Varda H. Gilad
    • 1
  • John P. M. Finberg
    • 3
  • Jose M. Rabey
    • 4
  1. 1.Department of Physiology and Pharmacology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
  2. 2.Department of Life SciencesBen Gurion University of the NegevBeer ShevaIsrael
  3. 3.Department of Pharmacology, Faculty of MedicineTechnion-Israel Institute of TechnologyHaifaIsrael
  4. 4.Department of Neurology, Assaf Harofeh Medical Center, and Sackler Faculty of MedicineTel Aviv UniversityZrifinIsrael

Personalised recommendations