Neurochemical Research

, Volume 30, Issue 8, pp 981–987 | Cite as

The Effect of Mild and Severe Hypoxia on Rat Cortical Synaptosomes

  • C. Aldinucci
  • A. Carretta
  • G. P. Pessina

Brain ischemia results in neuronal injury and neurological disability. The present study examined the effect of mild (6% O2) and severe (2% O2) hypoxia on mitochondria of rat cortical synaptosomes. During mild and severe hypoxia, JO2 and ATP production significantly decreased and mitochondrial membranes depolarized. Synaptosomal calcium concentration increased slightly, albeit not significantly. After a 1 h re-oxygenation period, JO2, ATP production and mitochondrial membrane potential returned to control levels in synaptosomes incubated in 6% O2. In synaptosomes incubated in 2% O2, however, the ATP production was not restored after re-oxygenation and intrasynaptosomal Ca2+ significantly increased. The results indicate that both mild and severe hypoxia influence the physiology of synaptosomal mitochondria; the modifications are reversible after mild hypoxia and but partly irreversible after severe hypoxia.


Hypoxia intrasynaptosomal Ca2+ concentration mitochondria mitochondrial respiration synaptosomes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jeong, J. I., Lee, Y. W., Kim, Y. K. 2003Chemical hypoxia-induced cell death in human glioma cells: role of reactive oxygen species, ATP depletion, mitochondrial damage and Ca2+Neurochem. Res.2812011211CrossRefPubMedGoogle Scholar
  2. 2.
    Green, D. R., Kroemer, G. 2004The pathophysiology of mitochondrial cell deathScience305626629CrossRefPubMedGoogle Scholar
  3. 3.
    Kroemer, G., Reed, J. C. 2000Mitochondrial control of cell deathNat. Med.6513519CrossRefPubMedGoogle Scholar
  4. 4.
    Desagher, S., Martinou, J.-C 2004Mitochondria as the central control point of apoptosisTrends Cell Biol.10369377CrossRefGoogle Scholar
  5. 5.
    Mishra, O. P., Delivoria-Papadopoulos, M. 2004Inositol tetrakisphosphate (IP4)- and inositol triphosphate (IP3)-dependent Ca2+ influx in cortical neuronal nuclei of newborn piglets following graded hypoxiaNeurochem. Res.29391396CrossRefPubMedGoogle Scholar
  6. 6.
    Mottet, D., Michel, G., Renard, P., Ninane, N., Raes, M., Michiels, C. 2002Role of ERK and calcium in the hypoxia-induced activation of HIF−1J. Cell Physiol.1943044CrossRefGoogle Scholar
  7. 7.
    Andreyev, A., Fiskum, G. 1999Calcium induced release of mitochondrial cytochrome c by different mechanisms selective for brain versus liverCell Death Differ.6825832CrossRefPubMedGoogle Scholar
  8. 8.
    Bambrick, L., Kristian, T., Fiskum, G. 2004Astrocyte mitochondrial mechanisms of ischemic brain injury and neuroprotectionNeurochem. Res.29601608CrossRefPubMedGoogle Scholar
  9. 9.
    Kristian, T., Gertsch, J., Bates, T. E., Siesjo, B. K. 2000Characteristics of the calcium-triggered mitochondrial permeability transition in nonsynaptic brain mitochondria: effect of cyclosporin A and ubiquinone OJ. Neurochem.7419992009CrossRefPubMedGoogle Scholar
  10. 10.
    Perez-Pinzon, M. A., Sick, T. J., Rosenthal, M. 1999Mechanism(s) of mitochondrial hyperoxidation after global cerebral ischemiaAdv. Exp. Med. Biol.471175180PubMedGoogle Scholar
  11. 11.
    Lai J. F. K., and Clark J. B. 1989. Isolation and characterization of synaptic and non-synaptic mitochondria from mammalian brain. Pages 43–97. in Boulton A. B. and Barker G. B. (eds), Humana PressGoogle Scholar
  12. 12.
    Gornall, A. G., Bardawil, C. J., David, M. M. 1949Determination of serum protein by means of the biuret reactionJ. Biol. Chem.177751766Google Scholar
  13. 13.
    Reynafarje, B., Costa, L. E., Lehninger, A. L. 1985O2 solubility in aqueous media determined by a kinetic methodAnal. Biochem.145406418CrossRefPubMedGoogle Scholar
  14. 14.
    Hesketh, T. R., Smith, G. A., Moore, J. P., Taylor, M. V., Metcalfe, J. C. 1983Free cytoplasmic calcium concentration and the mitogenic stimulation of lymphocytesJ. Biol. Chem.25848764882PubMedGoogle Scholar
  15. 15.
    Tsien, R. Y., Pozzan, T., Rink, T. J. 1982Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicatorJ. Cell Biol.94325338CrossRefPubMedGoogle Scholar
  16. 16.
    Grynkiewicz, G., Poenie, M., Tsien, R. Y. 1985A new generation of Ca2+ indicators with greatly improved fluorescence propertiesJ. Biol. Chem.26034403450PubMedGoogle Scholar
  17. 17.
    Banasiak, K. J., Xia, Y., Haddad, G. G. 2000Mechanisms underlying hypoxia-induced neuronal apoptosisProg. Neurobiol.62215249CrossRefPubMedGoogle Scholar
  18. 18.
    Gorman, A. M., Ceccatelli, S., Orrenius, S. 2000Role of mitochondria in neuronal apoptosisDev. Neurosci.22348358CrossRefPubMedGoogle Scholar
  19. 19.
    Allen, K. L., Almeida, A., Bates, T. E., Clark, J. B. 1995Changes of respiratory chain activity in mitochondrial and synaptosomal fractions isolated from the gerbil brain after graded ischaemiaJ. Neurochem.6422222229PubMedGoogle Scholar
  20. 20.
    Budd Haeberlein, S. L. 2004Mitochondrial function in apoptotic neuronal cell deathNeurochem. Res.29521530CrossRefPubMedGoogle Scholar
  21. 21.
    Miller, R. J. 1991The control of neuronal Ca2+ homeostasisProg. Neurobiol.37255285CrossRefPubMedGoogle Scholar
  22. 22.
    Keelan, J., Bates, T. E., Clark, J. B. 1996Intrasynaptosomal free calcium concentration during rat brain development: effects of hypoxia, aglycaemia, and ischaemiaJ. Neurochem.6624602467PubMedGoogle Scholar
  23. 23.
    Lazarewicz, J. W., Samoilov, M. O., Semenov, D. G. 1987Changes of intracellular calcium homeostasis in brain cortical structures during anoxia in vivo and in vitroResuscitation15245255CrossRefPubMedGoogle Scholar
  24. 24.
    Dagani, F., Ferrari, R., Canevari, I. 1990A pharmacological model for studying the role of NA+ gradients in the modulation of synaptosomal free [Ca2+]i levels and energy metabolismBrain Res.530261266CrossRefPubMedGoogle Scholar
  25. 25.
    Dagani, F., Ferrari, R., Tosca, P., Canevari, L. 1992Effects of calcium antagonists on glycolysis of rat brain synaptosomesBiochem. Pharmacol.43371374CrossRefPubMedGoogle Scholar
  26. 26.
    Kokura, S., Yoshida, N., Yoshikawa, T. 2002Anoxia/reoxygenation-induced leukocyte-endothelial cell interactionsFree Rad. Biol. Med.33427432CrossRefPubMedGoogle Scholar
  27. 27.
    Meini, A., Benocci, A., Frosini, M., Sgaragli, G. P., Blanco Garcia, J., Pessina, G. P., Aldinucci, C., Palmi, M. 2003Potentiation of intracellular Ca2+ mobilization by hypoxia-induced NO generation in rat brain striatal slices and human astrocytoma U−373 MG cells and its involvement in tissue damageEur. J. Neurosci.17692700Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of PhysiologyUniversity of SienaSienaItaly
  2. 2.Department of PhysiologyUniversity of SienaSienaItaly

Personalised recommendations