Deep Learning Guided Double Hidden Layer Neural Synchronization Through Mutual Learning

Abstract

In this paper, a Double Hidden Layer Neural Networks synchronization mechanism using Generative Adversarial Network (GAN) and mutual learning is used for the development of the cryptographic key exchange protocol. This protocol is used to exchange sensitive information through a public channel. At the time of exchanging sensitive information, an intruder can easily attack the vital information/signals by sniffing, spoofing, phishing, or Man-In-The-Middle attack. There is, however, hardly some investigation to investigate the randomness of the common input vector in the synchronization of two neural networks. This proposed technique provides GAN generated random input vectors for neural synchronization which are very sensitive to the seed value. To enhance the security of the synchronization process, GAN generates the best random sequence of the input vector. Two neural networks use GAN generated input vector and different random weight vector and swap their output. In some steps, it results in complete synchronization by setting the discrete weights according to the common learning rule. The synchronized weight vector serves as a session key at the end of the neural synchronization process. An increase in the weight range increases the complexity of a successful attack exponentially but the effort to build the neural key decreases over the polynomial time. The proposed technique offers synchronization and authentication steps in parallel. It is difficult for the attacker to distinguish between synchronization and authentication steps. This proposed technique has been passed through different parametric tests. The results have shown effective and robust potential. Simulations of the process show effectiveness in terms of cited results in the paper.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Abadi M, Andersen DG (2016) Learning to protect communications with adversarial neural cryptography. arXiv arxiv:1610.06918

  2. 2.

    Acharya UR, Acharya D, Bhat PS, Niranjan UC (2001) Compact storage of medical images with patient information. IEEE Trans Inf Technol Biomed 5(4):320–323. https://doi.org/10.1109/4233.966107

    Article  Google Scholar 

  3. 3.

    Acharya UR, Bhat PS, Kumar S, Min LC (2003) Transmission and storage of medical images with patient information. Comput Biol Med 33(4):303–310. https://doi.org/10.1016/s0010-4825(02)00083-5

    Article  Google Scholar 

  4. 4.

    Acharya UR, Niranjan UC, Iyengar SS, Kannathal N, Min LC (2004) Simultaneous storage of patient information with medical images in the frequency domain. Comput Methods Progr Biomed 76(1):13–19. https://doi.org/10.1016/j.cmpb.2004.02.009

    Article  Google Scholar 

  5. 5.

    Ahmad M, Farooq O, Datta S, Sohail SS, Vyas AL, Mulvaney D (2011) Chaos-based encryption of biomedical EEG signals using random quantization technique. In: 4th International conference on biomedical engineering and informatics (BMEI), pp 1471–1475. https://doi.org/10.1109/BMEI.2011.6098594

  6. 6.

    Allam AM, Abbas HM, El-Kharashi MW (2013) Authenticated key exchange protocol using neural cryptography with secret boundaries. In: Proceedings of the 2013 international joint conference on neural networks, IJCNN 2013, pp 1–8

  7. 7.

    Balasubramaniam P, Muthukumar P (2014) Synchronization of chaotic systems using feedback controller: an application to Diffie-Hellman key exchange protocol and ElGamal public key cryptosystem. J Egypt Math Soc 22(3):365–372. https://doi.org/10.1016/j.joems.2013.10.003

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Bauer FL (2011) Cryptology. In: van Tilborg HCA, Jajodia S (eds) Encyclopedia of cryptography and security, Springer, Boston, MA, pp 283–284. https://doi.org/10.1007/978-1-4419-5906-5

  9. 9.

    Capua CD, Meduri A, Morello R (2010) A smart ECG measurement system based on web-service-oriented architecture for telemedicine applications. IEEE Trans Instrum Meas 59(10):2530–2538. https://doi.org/10.1109/tim.2010.2057652

    Article  Google Scholar 

  10. 10.

    Chen H, Shi P, Lim CC (2017) Exponential synchronization for Markovian stochastic coupled neural networks of neutral-type via adaptive feedback control. IEEE Trans Neural Netw Learn Syst 28(7):1618–1632. https://doi.org/10.1109/TNNLS.2016.2546962

    MathSciNet  Article  Google Scholar 

  11. 11.

    Chen H, Shi P, Lim CC (2019) Cluster synchronization for neutral stochastic delay networks via intermittent adaptive control. IEEE Trans Neural Netw Learn Syst 30(11):3246–3259. https://doi.org/10.1109/tnnls.2018.2890269

    MathSciNet  Article  Google Scholar 

  12. 12.

    Cover TM, Thomas JA (2006) Elements of information theory, 2nd edn. Wiley series in telecommunications and signal processing, Wiley, New York

    Google Scholar 

  13. 13.

    Diffie W, Hellman M (1976) New directions in cryptography. IEEE Trans Inf Theory 22(6):644–654. https://doi.org/10.1109/tit.1976.1055638

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Dolecki M, Kozera R (2013) Distribution of the tree parity machine synchronization time. Adv Sci Technol Res J 7(18):20–27. https://doi.org/10.5604/20804075.1049490

    Article  Google Scholar 

  15. 15.

    Dolecki M, Kozera R (2013) Threshold method of detecting long-time TPM synchronization. In: Saeed K, Chaki R, Cortesi A, Wierzchoń S (eds) Computer information systems and industrial management. CISIM 2013. Lecture notes in computer science, vol 8104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40925-7_23

  16. 16.

    Dolecki M, Kozera R (2015) The impact of the TPM weights distribution on network synchronization time. In: Saeed K, Homenda W (eds) 14th computer information systems and industrial management (CISIM). Computer information systems and industrial management, vol LNCS-9339. Springer, Warsaw, pp 451–460. https://doi.org/10.1007/978-3-319-24369-6_37

  17. 17.

    Dong T, Huang T (2020) Neural cryptography based on complex-valued neural network. IEEE Trans Neural Netw Learn Syst 31(11):4999–5004. https://doi.org/10.1109/TNNLS.2019.2955165

    MathSciNet  Article  Google Scholar 

  18. 18.

    Dong T, Wang A, Zhu H, Liao X (2018) Event-triggered synchronization for reaction-diffusion complex networks via random sampling. Physica A Stat Mech Appl 495:454–462. https://doi.org/10.1016/j.physa.2017.12.008

    MathSciNet  Article  Google Scholar 

  19. 19.

    Eftekhari M (2012) A Diffie-Hellman key exchange protocol using matrices over noncommutative rings. Groups Complex Cryptol 4(1):167–176. https://doi.org/10.1515/gcc-2012-0001

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Ein-Dor L, Kanter I (1999) Confidence in prediction by neural networks. Phys Rev E 60(1):799–802. https://doi.org/10.1103/physreve.60.799

    Article  Google Scholar 

  21. 21.

    Engel A, den Broeck CV (2012) Statistical mechanics of learning. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139164542

    Article  MATH  Google Scholar 

  22. 22.

    Gomez H, Óscar Reyes, Roa E (2017) A 65 nm CMOS key establishment core based on tree parity machines. Integration 58:430–437. https://doi.org/10.1016/j.vlsi.2017.01.010

    Article  Google Scholar 

  23. 23.

    Kanso A, Smaoui N (2009) Logistic chaotic maps for binary numbers generations. Chaos Solitons Fractals 40(5):2557–2568. https://doi.org/10.1016/j.chaos.2007.10.049

    Article  MATH  Google Scholar 

  24. 24.

    Kanter I, Kinzel W, Kanter E (2002) Secure exchange of information by synchronization of neural networks. Europhys Lett EPL 57(1):141–147. https://doi.org/10.1209/epl/i2002-00552-9

    Article  MATH  Google Scholar 

  25. 25.

    Karakaya B, Gülten A, Frasca M (2019) A true random bit generator based on a memristive chaotic circuit: analysis, design and FPGA implementation. Chaos Solitons Fractals 119:143–149. https://doi.org/10.1016/j.chaos.2018.12.021

    Article  MATH  Google Scholar 

  26. 26.

    Kelsey J, Schneier B, Wagner D, Hall C (1998) Cryptanalytic attacks on pseudorandom number generators. In: Vaudenay S (eds) Fast software encryption. FSE 1998. Lecture notes in computer science, vol 1372. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69710-1_12

  27. 27.

    Kinzel W, Kanter I (2002) Interacting neural networks and cryptography. Adv Solid State Phys 42:383–391. https://doi.org/10.1007/3-540-45618-X_30

    Article  MATH  Google Scholar 

  28. 28.

    Klimov A, Mityagin A, Shamir A (2002) Analysis of neural cryptography. In: Zheng Y (eds) Advances in cryptology - ASIACRYPT 2002. ASIACRYPT 2002. Lecture notes in computer science, vol 2501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36178-2_18

  29. 29.

    Lakshmanan S, Prakash M, Lim CP, Rakkiyappan R, Balasubramaniam P, Nahavandi S (2018) Synchronization of an inertial neural network with time-varying delays and its application to secure communication. IEEE Trans Neural Netw Learn Syst 29(1):195–207. https://doi.org/10.1109/tnnls.2016.2619345

    MathSciNet  Article  Google Scholar 

  30. 30.

    Liaqat RM, Mehboob B, Saqib NA, Khan MA (2016) A framework for clustering cardiac patient’s records using unsupervised learning techniques. Procedia Comput Sci 98:368–373. https://doi.org/10.1016/j.procs.2016.09.056

    Article  Google Scholar 

  31. 31.

    Lin CF (2016) Chaotic visual cryptosystem using empirical mode decomposition algorithm for clinical EEG signals. J Med Syst 40(3):1–10

    Google Scholar 

  32. 32.

    Lin CF, Shih SH, Zhu JD (2014) Chaos based encryption system for encrypting electroencephalogram signals. J Med Syst 38(5):1–10

    Google Scholar 

  33. 33.

    Lindell Y, Katz J (2014) Introduction to modern cryptography. Cryptography and network security series, Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  34. 34.

    Liu L, Hu H, Deng Y, Miao S (2016) Pseudorandom bit generator based on non-stationary logistic maps. IET Inf Secur 10(2):87–94. https://doi.org/10.1049/iet-ifs.2014.0192

    Article  Google Scholar 

  35. 35.

    Liu P, Zeng Z, Wang J (2019) Global synchronization of coupled fractional-order recurrent neural networks. IEEE Trans Neural Netw Learn Syst 30(8):2358–2368. https://doi.org/10.1109/TNNLS.2018.2884620

    MathSciNet  Article  Google Scholar 

  36. 36.

    Meneses F, Fuertes W, Sancho J (2016) RSA encryption algorithm optimization to improve performance and security level of network messages. IJCSNS 16(8):55

    Google Scholar 

  37. 37.

    Mu N, Liao X (2013) An approach for designing neural cryptography. In: Guo C, Hou ZG, Zeng Z (eds) Advances in neural networks - ISNN 2013. ISNN 2013. Lecture notes in computer science, vol 7951. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39065-4_13

  38. 38.

    Mu N, Liao X, Huang T (2013) Approach to design neural cryptography: a generalized architecture and a heuristic rule. Phys Rev E. https://doi.org/10.1103/physreve.87.062804

    Article  Google Scholar 

  39. 39.

    Mulyadi IH, Nelmiawati N, Supriyanto E (2019) Improving accuracy of derived 12-lead electrocardiography by waveform segmentation. Indones J Electr Eng Inform IJEEI 7(1):2089–3272

    Google Scholar 

  40. 40.

    Murillo-Escobar MA, Cardoza-Avendaño L, López-Gutiérrez RM, Cruz-Hernández C (2017) A double chaotic layer encryption algorithm for clinical signals in telemedicine. J Med Syst 41(4):59. https://doi.org/10.1007/s10916-017-0698-3

    Article  Google Scholar 

  41. 41.

    Nayak J, Bhat PS, Acharya UR, Niranjan UC (2004) Simultaneous storage of medical images in the spatial and frequency domain: a comparative study. BioMed Eng OnLine 3:1–10

    Article  Google Scholar 

  42. 42.

    Nayak J, Bhat PS, Sathish Kumar M (2009) Efficient storage and transmission of digital fundus images with patient information using reversible watermarking technique and error control codes. J Med Syst 33(3):163–171. https://doi.org/10.1007/s10916-008-9176-2

    Article  Google Scholar 

  43. 43.

    Ni Z, Paul S (2019) A multistage game in smart grid security: a reinforcement learning solution. IEEE Trans Neural Netw Learn Syst 30(9):2684–2695. https://doi.org/10.1109/tnnls.2018.2885530

    MathSciNet  Article  Google Scholar 

  44. 44.

    Niemiec M (2018) Error correction in quantum cryptography based on artificial neural networks. Quantum Inf Process 18:174. https://doi.org/10.1007/s11128-019-2296-4

    MathSciNet  Article  Google Scholar 

  45. 45.

    NIST (2020) NIST Statistical Test. http://csrc.nist.gov/groups/ST/toolkit/rng/stats_tests.html

  46. 46.

    Patidar V, Sud KK, Pareek NK (2009) A pseudo random bit generator based on chaotic logistic map and its statistical testing. Informatica 33:441–452

    MathSciNet  MATH  Google Scholar 

  47. 47.

    Pu X, Tian XJ, Zhang J, Liu CY, Yin J (2017) Chaotic multimedia stream cipher scheme based on true random sequence combined with tree parity machine. Multimed Tools Appl 76(19):19881–19885. https://doi.org/10.1007/s11042-016-3728-0

    Article  Google Scholar 

  48. 48.

    Raeiatibanadkooki M, Quchani SR, KhalilZade M, Bahaadinbeigy K (2016) Compression and encryption of ECG signal using wavelet and chaotically Huffman code in telemedicine application. J Med Syst 40(3):1–8. https://doi.org/10.1007/s10916-016-0433-5

    Article  Google Scholar 

  49. 49.

    Rosen-Zvi M, Kanter I, Kinzel W (2002) Cryptography based on neural networks analytical results. J Phys A Math Gen 35(47):L707–L713. https://doi.org/10.1088/0305-4470/35/47/104

    MathSciNet  Article  MATH  Google Scholar 

  50. 50.

    Ruttor A (2007) Neural synchronization and cryptography. arxiv:0711.2411

  51. 51.

    Ruttor A, Kinzel W, Naeh R, Kanter I (2006) Genetic attack on neural cryptography. Phys Rev E. https://doi.org/10.1103/physreve.73.036121

    Article  Google Scholar 

  52. 52.

    Santhanalakshmi S, Sangeeta K, Patra GK (2015) Analysis of neural synchronization using genetic approach for secure key generation. Commun Comput Inf Sci 536:207–216

    Google Scholar 

  53. 53.

    Sarkar A, Mandal JK (2012) Artificial neural network guided secured communication techniques: a practical approach. LAP LAMBERT Academic Publishing, Saarbrücken

    Google Scholar 

  54. 54.

    Sarkar A, Mandal JK (2012) Key generation and certification using multilayer perceptron in wireless communication (KGCMLP). Int J Secur Privacy Trust Manag IJSPTM 1(5):2319–4103

    Google Scholar 

  55. 55.

    Sarkar A, Dey J, Bhowmik A (2019a) Multilayer neural network synchronized secured session key based encryption in wireless communication. Indones J Electr Eng Comput Sci 14(1):169

    Article  Google Scholar 

  56. 56.

    Sarkar A, Dey J, Bhowmik A, Mandal JK, Karforma S (2019) Computational intelligence based neural session key generation on E-health system for ischemic heart disease information sharing. In: Mandal J, Sinha D, Bandopadhyay J (eds) Contemporary advances in innovative and applicable information technology. Advances in intelligent systems and computing, vol 812. Springer, Singapore. https://doi.org/10.1007/978-981-13-1540-4_3

  57. 57.

    Sarkar A, Dey J, Chatterjee M, Bhowmik A, Karforma S (2019c) Neural soft computing based secured transmission of intraoral gingivitis image in e-health care. Indones J Electr Eng Comput Sci 14(1):178

    Article  Google Scholar 

  58. 58.

    Steiner M, Tsudik G, Waidner M (1996) Diffie–Hellman key distribution extended to group communication. In: Proceedings of 3rd ACM Conference, pp 31–37

  59. 59.

    Wang A, Dong T, Liao X (2016) Event-triggered synchronization strategy for complex dynamical networks with the Markovian switching topologies. Neural Netw 74:52–57

    Article  Google Scholar 

  60. 60.

    Wang J, Cheng LM, Su T (2018) Multivariate cryptography based on clipped hopfield neural network. IEEE Trans Neural Netw Learn Syst 29(2):353–363. https://doi.org/10.1109/tnnls.2016.2626466

    MathSciNet  Article  Google Scholar 

  61. 61.

    Wang JL, Qin Z, Wu HN, Huang T (2019) Passivity and synchronization of coupled uncertain reaction-diffusion neural networks with multiple time delays. IEEE Trans Neural Netw Learn Syst 30(8):2434–2448

    MathSciNet  Article  Google Scholar 

  62. 62.

    Xiao Q, Huang T, Zeng Z (2019) Global exponential stability and synchronization for discrete-time inertial neural networks with time delays: a timescale approach. IEEE Trans Neural Netw Learn Systems 30(6):1854–1866. https://doi.org/10.1109/TNNLS.2018.2874982

    MathSciNet  Article  Google Scholar 

  63. 63.

    Zhang Z, Cao J (2019) Novel finite-time synchronization criteria for inertial neural networks with time delays via integral inequality method. IEEE Trans Neural Netw Learn Syst 30(5):1476–1485. https://doi.org/10.1109/TNNLS.2018.2868800

    MathSciNet  Article  Google Scholar 

  64. 64.

    Zhang Z, Li A, Yu S (2018) Finite-time synchronization for delayed complex-valued neural networks via integrating inequality method. Neurocomputing 318:248–260. https://doi.org/10.1016/j.neucom.2018.08.063

    Article  Google Scholar 

  65. 65.

    Zhang Z, Chen M, Li A (2020) Further study on finite-time synchronization for delayed inertial neural networks via inequality skills. Neurocomputing 373:15–23. https://doi.org/10.1016/j.neucom.2019.09.034

    Article  Google Scholar 

  66. 66.

    Zhou X, Tang X (2011) Research and implementation of RSA algorithm for encryption and decryption. In: Proceedings of 2011 6th international forum on strategic technology, vol 2. pp 1118–1121. https://doi.org/10.1109/IFOST.2011.6021216

Download references

Acknowledgements

The authors expressed deep gratitude for the moral and congenial atmosphere support provided by Ramakrishna Mission Vidyamandira, Belur Math, India.

Funding

This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arindam Sarkar.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sarkar, A. Deep Learning Guided Double Hidden Layer Neural Synchronization Through Mutual Learning. Neural Process Lett (2021). https://doi.org/10.1007/s11063-021-10443-8

Download citation

Keywords

  • Neural synchronization
  • Tree parity machine (TPM )
  • Session key
  • Neural network
  • Mutual learning
  • Double layer tree parity machine (DLTPM)
  • Generative adversarial network (GAN)