Emotion Analysis on Text Using Multiple Kernel Gaussian...

Abstract

The ability to discern human emotions is critical for making chatbox behave like humans. Gaussian Process (GP) is a non-parametric Bayesian modeling and can be used to predict the presence of either a single emotion (single-task GP) or multiple emotions (multi-task GP) in natural language text. Employing multiple kernels in GP can enhance the performance of the emotion analysis tasks. The particular choice of kernel functions determines the properties such as smoothness, length scales, sharpness, and amplitude, drawn from the GP prior. Using a specific kernel may be a source of bias and can be avoided by using different kernels together. The default kernel used with GP is a Radial Basis Function (RBF). It is infinitely differentiable; GP with this function has mean square derivatives of all orders and is thus very smooth. The sharpness which occurs in the midst of the smoothness can be detected using the exponential kernel. The multi-layer perceptron kernel has greater generalization for each training example and is good for extrapolation. Our experiments show that, for learning the presence of a single emotion in a natural language sentence (single-task), multiple kernel GP with the sum of RBF and multi-layer perceptron kernels performs better than single kernel GP. Likewise, for learning the presence of several different emotions in a sentence (multi-task), multiple kernel GP with the sum of RBF, exponential and multi-layer perceptron kernels performs better than single kernel GP. Multiple Kernel Gaussian Process also outperforms Convolutional Neural Network (CNN).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Zhao Y, Qin B, Liu T, Tang D (2016) Social sentiment sensor: a visualization system for topic detection and topic sentiment analysis on microblog. Multimedia Tools Appl Springer 75(15):8843–60

    Article  Google Scholar 

  2. 2.

    Li S, Huang L, Wang R, Zhou G (2015) Sentence-level emotion classification with label and context dependence. Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing, vol 1, pp 1045–1053

  3. 3.

    Pajupuu H, Kerge K, Altrov R (2012) Lexicon-based detection of emotion in different types of texts: preliminary remarks. Eesti Rakenduslingvistika Ühingu aastaraamat 8:171–84

    Article  Google Scholar 

  4. 4.

    Pang B, Lee L, Vaithyanathan S (2002) Thumbs up? Sentiment classification using machine learning techniques. arXiv preprint arXiv:cs/0205070. May 28

  5. 5.

    Salvetti F, Reichenbach C, Lewis S (2006) Opinion polarity identification of movie reviews. In: Computing attitude and affect in text: theory and applications. Springer, Dordrecht, pp 303–316

  6. 6.

    Lewis DD (1992) An evaluation of phrasal and clustered representations on a text categorization task. In: Proceedings of the 15th annual international ACM SIGIR conference on research and development in information retrieval, June 1, pp 37–50

  7. 7.

    Rezaeinia SM, Rahmani R, Ghodsi A, Veisi H (2019) Sentiment analysis based on improved pre-trained word embeddings. Expert Syst Appl 117:139–47

    Article  Google Scholar 

  8. 8.

    Alm CO, Roth D, Sproat R (2005) Emotions from text: machine learning for text-based emotion prediction. In: Proceedings of human language technology conference and conference on empirical methods in natural language processing, pp 579–586

  9. 9.

    Beck D, Cohn T, Specia L (2014) Joint emotion analysis via multi-task Gaussian processes. Proceedings of the 2014 conference on empirical methods in natural language processing. ACL, pp 1798–1803

  10. 10.

    Kiritchenko S, Zhu X, Mohammad SM (2014) Sentiment analysis of short informal texts. J Artif Intell Res 20(50):723–62

    Article  Google Scholar 

  11. 11.

    Chatterjee A, Gupta U, Chinnakotla MK, Srikanth R, Galley M, Agrawal P (2019) Understanding emotions in text using deep learning and big data. Comput Hum Behav 93:309–17

    Article  Google Scholar 

  12. 12.

    Aman S, Szpakowicz S (2008) Using roget’s thesaurus for fine-grained emotion recognition. In: Proceedings of the third international joint conference on natural language processing: volume-I

  13. 13.

    Sadr H, Pedram MM, Teshnehlab M (2020) Multi-view deep network: a deep model based on learning features from heterogeneous neural networks for sentiment analysis. IEEE Access 4(8):86984–97

    Article  Google Scholar 

  14. 14.

    Sadr H, Pedram MM, Teshnehlab M (2019) A robust sentiment analysis method based on sequential combination of convolutional and recursive neural networks. Neural Process Lett 50(3):2745–61

    Article  Google Scholar 

  15. 15.

    Zhang S, Xu X, Pang Y, Han J (2020) Multi-layer attention based CNN for target-dependent sentiment classification. Neural Process Lett 51(3):2089–103

    Article  Google Scholar 

  16. 16.

    Yang H, Willis A, De Roeck A, Nuseibeh B (2012) A hybrid model for automatic emotion recognition in suicide notes. Biomedical informatics insights. 5:BII-S8948

  17. 17.

    Chaffar S, Inkpen D (2011) Using a heterogeneous dataset for emotion analysis in text. In: Canadian conference on artificial intelligence, May 25, Springer, Berlin, Heidelberg, pp 62–67

  18. 18.

    Strapparava C, Mihalcea R (2008) Learning to identify emotions in text. Proceedings of the 2008 ACM symposium on applied computing. ACM, pp 1556–1560

  19. 19.

    Maas AL, Daly RE, Pham PT, Huang D, Ng AY, Potts C (2011) Learning word vectors for sentiment analysis. Proceedings of the 49th annual meeting of the association for computational linguistics: human language technologies. ACL, pp 142-150

  20. 20.

    Zhang L (2013) Contextual and active learning-based affect-sensing from virtual drama improvisation. ACM Trans Speech Lang Process (TSLP) 9(4):1–25

    Article  Google Scholar 

  21. 21.

    Ahmad SN, Laroche M (2015) How do expressed emotions affect the helpfulness of a product review? Evidence from reviews using latent semantic analysis. Int J Electron Commerce 20(1):76–111

    Article  Google Scholar 

  22. 22.

    Zhe X, Boucouvalas AC (2002) Text-to-emotion engine for real time internet communication. In: Proceedings of international symposium on communication systems, networks and DSPs, July 15, pp 164–168

  23. 23.

    Donath J, Karahalios K, Viegas F (1999) Visualizing conversation. J Comput-Mediated Commun 4(4):JCMC442

    Google Scholar 

  24. 24.

    Chaumartin FR UPAR7: a knowledge-based system for headline sentiment tagging

  25. 25.

    Liu H, Lieberman H, Selker T (2003) A model of textual affect sensing using real-world knowledge. In: Proceedings of the 8th international conference on intelligent user interfaces, January 12, pp 125–132

  26. 26.

    Gruber TR (1995) Toward principles for the design of ontologies used for knowledge sharing? Int J Hum Comput Stud 43(5–6):907–28

    Article  Google Scholar 

  27. 27.

    Grassi M (2009) Developing HEO human emotions ontology. In: European workshop on biometrics and identity management, September 16. Springer, Berlin, Heidelberg, pp 244–251

  28. 28.

    Ma C, Prendinger H, Ishizuka M (2005) Emotion estimation and reasoning based on affective textual interaction. In: International conference on affective computing and intelligent interaction, October 22. Springer, Berlin, Heidelberg, pp 622–628

  29. 29.

    Pestian JP, Matykiewicz P, Linn-Gust M, South B, Uzuner O, Wiebe J, Cohen KB, Hurdle J, Brew C (2012) Sentiment analysis of suicide notes: a shared task. Biomed Inform Insights 5:BII-S9042

    Article  Google Scholar 

  30. 30.

    Nikfarjam A, Emadzadeh E, Gonzalez G (2012) A hybrid system for emotion extraction from suicide notes. Biomed Inform Insights 5:BII-S8981

    Article  Google Scholar 

  31. 31.

    Erşahin B, AktasÖ KD, Erşahİn M (2019) A hybrid sentiment analysis method for Turkish. Turk J Electr Eng Comput Sci 27(3):1780–93

    Article  Google Scholar 

  32. 32.

    Sun X, Zhang C, Ding S, Quan C (2018) Detecting anomalous emotion through big data from social networks based on a deep learning method. Multimedia Tools Appl 1–22

  33. 33.

    De Albornoz JC, Plaza L, Gervás P, Díaz A (2011) A joint model of feature mining and sentiment analysis for product review rating. In: European conference on information retrieval, Springer, Berlin, Heidelberg, pp 55–66

  34. 34.

    Bao S, Xu S, Zhang L, Yan R, Su Z, Han D, Yu Y (2009) Joint emotion-topic modeling for social affective text mining. In: 2009 Ninth IEEE international conference on data mining, IEEE, pp 699–704

  35. 35.

    Pang B, Lee L (2008) Opinion mining and sentiment analysis. Found Trends Inf Retrieval 2(1–2):1–35

    Article  Google Scholar 

  36. 36.

    Pang B, Lee L, Vaithyanathan S (2002) Thumbs up? Sentiment classification using machine learning techniques. Proceedings of the ACL-02 conference on Empirical methods in natural language processing, Association for Computational Linguistics, vol 10, pp 79–86

  37. 37.

    Alm CO, Roth D, Sproat R (2005) Emotions from text: Machine learning for text-based emotion prediction. Proceedings of the conference on human language technology and empirical methods in natural language processing, ACL, 579–586

  38. 38.

    Williams CK, Rasmussen CE (2006) Gaussian processes for machine learning. MIT press, Cambridge

    Google Scholar 

  39. 39.

    Cohn T, Specia L (2013) Modelling annotator bias with multi-task gaussian processes: an application to machine translation quality estimation. Proceedings of the 51st annual meeting of the ACL, vol 1, pp 32–42

  40. 40.

    Ebden M (2015) Gaussian processes: a quick introduction. arXiv preprint arXiv:1505.02965, May 12

  41. 41.

    Angel Deborah S, Milton Rajendram S, Mirnalinee TT (2017) SSN\_MLRG1 at SemEval-2017 task 4: sentiment analysis in twitter using multi-kernel Gaussian process classifier. Proceedings of the 11th international workshop on semantic evaluation. ACL, pp 709–712

  42. 42.

    Zhang Y, Yang Q (2017) A survey on multi-task learning. arXiv preprint arXiv:1707.08114

  43. 43.

    Alvarez Mauricio A, Rosasco L, Lawrence Neil D et al (2015) Kernels for vector-valued functions: a review. Found Trends® Mach Learn Now Publishers, Inc 4(3):10177–10194

  44. 44.

    Alvarez MA, Rosasco L, Lawrence ND (2012) Kernels for vector-valued functions: a review. Found Trends® Mach Learn 4(3):195–266

    Article  Google Scholar 

  45. 45.

    Gönen M, Alpaydın E (2011) Multiple kernel learning algorithms. J Mach Learn Res 12:2211–68

    MathSciNet  MATH  Google Scholar 

  46. 46.

    Wilson A, Adams R (2013) Gaussian process kernels for pattern discovery and extrapolation. International conference on machine learning, pp 1067–1075

  47. 47.

    Carlo S, Rada M (2007) Semeval-2007 task 14: affective text. Proceedings of the 4th international workshop on semantic evaluation, Association for Computational Linguistics, pp 70–74

  48. 48.

    Cortis K, Freitas A, Daudert T, Huerlimann M, Zarrouk M, Handschuh S, Davis B (2017) SemEval-2017 task 5: fine-grained sentiment analysis on financial microblogs and news. 11th International workshop on semantic evaluations (SemEval-2017). ACL, pp 519–535

  49. 49.

    Angel Deborah S, Milton Rajendram S, Mirnalinee TT (2017) SSN\_MLRG1 at SemEval-2017 task 5: fine-grained sentiment analysis using multiple kernel Gaussian process regression model. Proceedings of the 11th international workshop on semantic evaluation. ACL, pp 823–826

Download references

Acknowledgements

SemEval 2017 dataset - Horizon 2020 ICT Programme Project SSIX: Social Sentiment analysis financial IndeXes, ICT-2014–2015. A Big OpenData, Grant Agreement No.: 645425 for Innovation action (2015–2018).

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Angel Deborah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Angel Deborah, S., Mirnalinee, T.T. & Rajendram, S.M. Emotion Analysis on Text Using Multiple Kernel Gaussian.... Neural Process Lett (2021). https://doi.org/10.1007/s11063-021-10436-7

Download citation

Keywords

  • Natural Language Processing (NLP)
  • Gaussian Process (GP)
  • Emotion analysis
  • Single-task GP
  • Multi-task GP
  • Multiple kernel learning
  • RBF kernel
  • Exponential kernel
  • Multi-Layer perceptron kernel