Finite-Time and Fixed-Time Synchronization of Complex Networks with Discontinuous Nodes via Quantized Control

Abstract

This paper investigates finite-time (FET) and fixed-time (FDT) synchronization of discontinuous complex networks (CNs) via quantized controllers. These control schemes can take full advantage of limited communication resources. By designing Lyapunov function and using different control schemes, several sufficient conditions are proposed such that the dynamical CNs are able to realize synchronization within a settling time. The settling time is related to the initial values of the considered systems using FET control, while it is regardless of the initial values when a special case of FET control named FDT control is utilized. Moreover, FET and FDT synchronization of discontinuous CNs are also considered via some existing controllers without logarithmic quantization, respectively. Numerical simulations are presented to demonstrate the theoretical results.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Stogatz SH, Stewart I (1993) Coupled oscillators and biological synchronization. Sci Am 269(6):102–109

    Google Scholar 

  2. 2.

    Xie Q, Chen G, Bollt EM (2002) Hybrid chaos synchronization and its application in information processing. Math Comput Model 35(1):145–163

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Li C, Liao X, Wong K (2005) Lag synchronization of hyperchaos with application to secure communications. Chaos Solitons Fractals 23(1):183–193

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Li C, Chen G (2004) Synchronization in general complex dynamical networks with coupling delays. Phys A 343:263–278

    MathSciNet  Google Scholar 

  5. 5.

    Huang T, Li C, Duan S, Starzyk J (2012) Robust exponential stability of uncertain delayed neural networks with stochastic perturbation and impulse effects. IEEE Trans Neural Netw Learn Syst 23:866–875

    Google Scholar 

  6. 6.

    Li X, Rakkiyappan R (2013) Impulsive controller design for exponential synchronization of chaotic neural networks with mixed delays. Commun Nonlinear Sci Numer Simul 18(6):1515–1523

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Li C, Yu W, Huang T (2014) Impulsive synchronization schemes of stochastic complex networks with switching topology: average time approach. Neural Netw 54:85–94

    MATH  Google Scholar 

  8. 8.

    Vincent UE, Guo R (2011) Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller. Phys Lett A 375:2322–2326

    MATH  Google Scholar 

  9. 9.

    Aghababa MP, Khanmohammadi S, Alizadeh G (2011) Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl Math Model 35(6):3080–3091

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Haimo VT (1986) Finite-time controllers. SIAM J Control Optim 24(4):760–770

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Bowong S, Kakmeni F (2003) Chaos control and duration time of a class of uncertain chaotic systems. Phys Lett A 316:206–217

    MATH  Google Scholar 

  12. 12.

    Aghababa MP, Aghababa HP (2012) Synchronization of mechanical horizontal platform systems in finite time. Appl Math Model 36(10):4579–4591

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Yang X, Wu Z, Cao J (2013) Finite-time synchronization of complex networks with nonidentical discontinuous nodes. Nonlinear Dyn 73(4):2313–2327

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Zhou C, Zhang W, Yang X, Xu C, Feng J (2017) Finite-time synchronization of complex-valued neural networks with mixed delays and uncertain perturbations. Neural Process Lett 46:271–291

    Google Scholar 

  15. 15.

    Polyakov A (2012) Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans Autom Control 57(8):2106–2110

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Yang X, Lam J, Ho DWC, Feng Z (2017) Fixed-time synchronization of complex networks with impulsive effects via nonchattering control. IEEE Trans Autom Control 62(11):5511–5521

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Zhang W, Li C, Huang T, Huang J (2018) Fixed-time synchronization of complex networks with nonidentical nodes and stochastic noise perturbations. Phys. A 492:1531–1542

    MathSciNet  Google Scholar 

  18. 18.

    Polyakov A, Efimov D, Perruquetti W (2015) Finite-time and fixedtime stabilization: implicit Lyapunov function approach. Automatica 51:332–340

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Zuo Z, Tie L (2016) Distributed robust finite-time nonlinear consensus protocols for multi-agent systems. Int J Syst Sci 47(6):1366–1375

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Cao J, Li R (2017) Fixed-time synchronization of delayed memristor-based recurrent neural networks. Sci China Inf Sci 60(3):032201

    MathSciNet  Google Scholar 

  21. 21.

    Zhu X, Yang X, Alsaadi FE, Hayat T (2018) Fixed-time synchronization of coupled discontinuous neural networks with nonidentical perturbations. Neural Process Lett 48:1161–1174

    Google Scholar 

  22. 22.

    Lu W, Chen T (2008) Almost periodic dynamics of a class of delayed neural networks with discontinuous activations. Neural Comput 20(4):1065–1090

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Yang X, Cao J (2013) Exponential synchronization of delayed neural networks with discontinuous activations. IEEE Trans Circuits Syst 60(9):2431–2439

    MathSciNet  Google Scholar 

  24. 24.

    Yang X, Ho DWC, Lu J, Song Q (2015) Finite-time cluster synchronization of T–S fuzzy complex networks with discontinuous subsystems and random coupling delays. IEEE Trans Fuzzy Syst 23(6):2302–2316

    Google Scholar 

  25. 25.

    Yang X, Song Q, Liang J, He B (2015) Finite-time synchronization of coupled discontinuous neural networks with mixed delays and nonidentical perturbations. J Frankl Inst 352(10):4382–4406

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Filippov AF (1988) Differential equations with discontinuous righthand sides. Kluwer Academic, Dordrecht

    Google Scholar 

  27. 27.

    Forti M, Nistri P (2003) Global convergence of neural networks with discontinuous neuron activations. IEEE Trans Circuits Syst 50(11):1421–1435

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Forti M, Nistri P, Papini D (2005) Global exponential stability and global convergence in finite time of delayed neural networks with infinite gain. IEEE Trans Neural Netw 16(6):1449–1463

    Google Scholar 

  29. 29.

    Zhang W, Yang X, Xu C, Feng J, Li C (2018) Finite-time synchronization of discontinuous neural networks with delays and mismatched parameters. IEEE Trans Neural Netw Learn Syst 29(8):3761–3771

    MathSciNet  Google Scholar 

  30. 30.

    Ji G, Hu C, Yu J, Jiang H (2018) Finite-time and fixed-time synchronization of discontinuous complex networks: a unified control framework design. J Frankl Inst. https://doi.org/10.1016/j.jfranklin.2018.04.026

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Brockett RW, Liberzon D (2000) Quantized feedback stabilization of linear systems. IEEE Trans Autom Control 45(7):1279–1289

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Tian E, Yue D, Peng C (2008) Quantized output feedback control for networked control systems. Inf Sci 178(12):2734–2749

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Song G, Li T, Li Y, Lu J (2016) Quantized output feedback stabilization for nonlinear discrete-time systems subject to saturating actuator. Nonlinear Dyn 83(1):305–317

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Li H, Chen G, Huang T, Dong Z, Zhu W, Gao L (2016) Event-triggered distributed average consensus over directed digital networks with limited communication bandwidth. IEEE Trans Cybern 46:3098–3110

    Google Scholar 

  35. 35.

    Wan Y, Cao J, Wen G (2017) Quantized synchronization of chaotic neural networks with scheduled output feedback control. IEEE Trans Neural Netw Learn Syst 28(11):2638–2647

    MathSciNet  Google Scholar 

  36. 36.

    Xu C, Yang X, Lu J, Feng J, Alsaadi FE, Hayat T (2017) Finte-time synchronization of networks via quantized intermittent pinning control. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2017.2749248

    Google Scholar 

  37. 37.

    Strogatz SH, Stewart I (1993) Coupled oscillators and biological synchronization. Sci Am 269(6):102–109

    Google Scholar 

  38. 38.

    Adamic LA, Huberman BA (1999) Growth dynamics of the world wide web. Nature 401(6749):131

    Google Scholar 

  39. 39.

    Liu B, Lu W, Chen T (2012) New conditions on synchronization of networks of linearly coupled dynamical systems with non-Lipschitz right-hand sides. Neural Netw 25:5–13

    MATH  Google Scholar 

  40. 40.

    Clarke FH (1987) Optimization and nonsmooth analysis. SIAM, Philadelphia

    Google Scholar 

  41. 41.

    Hardy G, Littlewood J, Polya G (1952) Inequalities, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  42. 42.

    Forti M, Grazzini M, Nistri P, Pancioni L (2006) Generalized Lyapunov approach for convergence of neural networks with discontinuous or non-Lipschitz activations. Phys D 214(1):88–99

    MathSciNet  MATH  Google Scholar 

  43. 43.

    Lu W, Liu X, Chen T (2016) A note on finite-time and fixedtime stability. Neural Netw 81:11–15

    Google Scholar 

  44. 44.

    Brown R (1993) Generalizations of the Chua equations. IEEE Trans Circuits Syst 40(11):878–884

    MATH  Google Scholar 

  45. 45.

    Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 61374078, 61673078, 61633011.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chuandong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Yang, S., Li, C. et al. Finite-Time and Fixed-Time Synchronization of Complex Networks with Discontinuous Nodes via Quantized Control. Neural Process Lett 50, 2073–2086 (2019). https://doi.org/10.1007/s11063-019-09985-9

Download citation

Keywords

  • Finite-time synchronization
  • Fixed-time synchronization
  • Complex networks
  • Quantized control