Advertisement

Neural Processing Letters

, Volume 36, Issue 2, pp 189–202 | Cite as

Bayesian Robust PCA of Incomplete Data

  • Jaakko Luttinen
  • Alexander Ilin
  • Juha Karhunen
Article

Abstract

We present a probabilistic model for robust factor analysis and principal component analysis in which the observation noise is modeled by Student-t distributions in order to reduce the negative effect of outliers. The Student-t distributions are modeled independently for each data dimensions, which is different from previous works using multivariate Student-t distributions. We compare methods using the proposed noise distribution, the multivariate Student-t and the Laplace distribution. Intractability of evaluating the posterior probability density is solved by using variational Bayesian approximation methods. We demonstrate that the assumed noise model can yield accurate reconstructions because corrupted elements of a bad quality sample can be reconstructed using the other elements of the same data vector. Experiments on an artificial dataset and a weather dataset show that the dimensional independency and the flexibility of the proposed Student-t noise model can make it superior in some applications.

Keywords

Variational Bayesian methods Principal component analysis Factor analysis Robustness Outliers Missing values 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Archambeau C, Delannay N, Verleysen M (2006) Robust probabilistic projections. In: Proceedings of the 23rd international conference on machine learning (ICML2006), pp 33–40Google Scholar
  2. 2.
    Beal MJ (2003) Variational algorithms for approximate Bayesian inference. PhD thesis, Gatsby Computational Neuroscience Unit, University College, LondonGoogle Scholar
  3. 3.
    Bishop C (1999) Variational principal components. In: Proceedings of the 9th international conference on artificial neural networks (ICANN’99), vol 1, pp 509–514Google Scholar
  4. 4.
    Bishop C: Pattern recognition and machine learning. Springer, New York (2006)MATHGoogle Scholar
  5. 5.
    Candès EJ, Li X, Ma Y, Wright J: Robust principal component analysis?. J ACM 58, 37 (2011)CrossRefGoogle Scholar
  6. 6.
    Chandrasekaran V, Sanghavi S, Parrilo PA, Willsky AS (2009) Sparse and low-rank matrix decomposition. In: IFAC symposium on system identificationGoogle Scholar
  7. 7.
    Cichocki A, Amari SI: Adaptive blind signal and image processing: learning algorithms and applications. Wiley, New York (2002)CrossRefGoogle Scholar
  8. 8.
    Ding X, He L, Carin L: Bayesian robust principal component analysis. IEEE Transactions on Image Processing 29(12), 3419–3430 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gao J: Robust L1 principal component analysis and its Bayesian variational inference. Neural Comput 20(2), 555–572 (2008)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Hyvärinen A, Karhunen J, Oja E: Independent component analysis. J. Wiley, New York (2001)CrossRefGoogle Scholar
  11. 11.
    Ilin A, Raiko T: Practical approaches to principal component analysis in the presence of missing values. J Mach Learn Res 11, 1957–2000 (2010)MathSciNetMATHGoogle Scholar
  12. 12.
    Jolliffe I: Principal component analysis, 2nd edn. Springer, New York (2002)MATHGoogle Scholar
  13. 13.
    Khan Z, Dellaert F: Robust generative subspace modeling: the subspace t distribution. Tech. rep., GVU Center, College of Computing, Georgia (2004)Google Scholar
  14. 14.
    Liu C, Rubin D: ML estimation of the t distribution using EM and its extensions, ECM and ECME. Stat Sinica 5, 19–39 (1995)MathSciNetMATHGoogle Scholar
  15. 15.
    Luttinen J, Ilin A (2009) Variational Gaussian-process factor analysis for modeling spatio-temporal data. In: Advances in neural information processing systems 22. MIT Press, Cambridge, MA, USA, pp 1177–1185Google Scholar
  16. 16.
    Luttinen J, Ilin A: Transformations in variational Bayesian factor analysis to speed up learning. Neurocomputing 73(7–9), 1093–1102 (2010)CrossRefGoogle Scholar
  17. 17.
    Roweis S: EM algorithms for PCA and SPCA. In: Jordan, M, Kearns, M, Solla, S (eds) Advances in neural information processing systems, vol 10, pp. 626–632. MIT Press, Cambridge (1998)Google Scholar
  18. 18.
    Tipping M, Bishop C: Probabilistic principal component analysis. J R Stat Soc Ser B 61(3), 611–622 (1999)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Wright J, Peng Y, Ma Y, Ganesh A, Rao S (2009) Robust principal component analysis: Exact recovery of corrupted low-rank matrices by convex optimization. In: Advances in neural information processing systems 22. MIT Press, Cambridge, MAGoogle Scholar
  20. 20.
    Zhao J, Jiang Q: Probabilistic PCA for t distributions. Neurocomputing 69, 2217–2226 (2006)CrossRefGoogle Scholar
  21. 21.
    Zhao Jh, Yu PLH: A note on variational Bayesian factor analysis. Neural Netw 22, 988–997 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Jaakko Luttinen
    • 1
  • Alexander Ilin
    • 1
  • Juha Karhunen
    • 1
  1. 1.Department of Information and Computer ScienceAalto University School of ScienceAaltoFinland

Personalised recommendations