Advertisement

Neural Processing Letters

, Volume 32, Issue 1, pp 45–57 | Cite as

Stability Analysis of Stochastic Fuzzy Cellular Neural Networks With Time-Varying Delays and Reaction-Diffusion Terms

  • Qintao Gan
  • Rui Xu
  • Pinghua Yang
Article

Abstract

In this paper, a class of stochastic fuzzy cellular neural networks with time-varying delays and reaction-diffusion terms is investigated. By using Lyapunov–Krasovskii functional and stochastic analysis approaches, new and less conservative delay-derivative-dependent stability criteria are presented to guarantee the neural networks to be globally exponentially stable in the mean square for all admissible stochastic perturbations. Numerical simulations are carried out to illustrate the main results.

Keywords

Fuzzy cellular neural networks Reaction-diffusion Stochastic Exponential stability Lyapunov functional 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cao J (2001) Stability conditions for delayed CNNs. IEEE Trans Circuits Syst I 48(11): 1330–1333MATHCrossRefGoogle Scholar
  2. 2.
    Chen L, Zhao H (2008) Stability analysis of stochastic fuzzy cellular neural networks with delays. Neurocomputing 72(1–3): 436–444CrossRefGoogle Scholar
  3. 3.
    Chua LO, Yang L (1988a) Cellular neural networks: theory. IEEE Trans Circuits Syst 35(10): 1257–1272MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chua LO, Yang L (1988b) Cellular neural networks: applications. IEEE Trans Circuits Syst 35(10): 1273–1290CrossRefMathSciNetGoogle Scholar
  5. 5.
    Hale J, Verduyn Lunel SM (1993) Introdution to functional differential equations. Springer-Verlag, New YorkGoogle Scholar
  6. 6.
    Huang T (2006) Exponential stability of fuzzy cellular neural networks with distributed delay. Phys Lett A 351(1–2): 48–52MATHCrossRefGoogle Scholar
  7. 7.
    Huang T (2007) Exponential stability of delayed fuzzy cellular neural networks with diffusion. Chaos Solitons Fractals 31(3): 658–664MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Liao X, Fu Y, Cao J, Zhao X (2000) Stability of Hopfield neural networks with reaction-diffusion terms. Acta Electronica Sinica 28(1): 78–81Google Scholar
  9. 9.
    Liao X, Yang S, Cheng S, Sheng Y (2002) Stability of generalized neural networks with reaction-diffusion terms. Sci China (Series E) 32(1): 87–94Google Scholar
  10. 10.
    Liu Y, Tang W (2004) Exponential stability of fuzzy cellular neural networks with constant and time-varying delays. Phys Lett A 323(3–4): 224–233MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lu J (2008) Global exponential stability and periodicity of reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions. Chaos Solitons Fractals 35(1): 116–125MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Park JH (2006a) A new stability analysis of delayed cellular neural networks. Appl Math Comput 181(1): 200–205MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Park JH (2006b) Robust stability of bidirectional associative memory neural networks with time delays. Phys Lett A 349(6): 494–499CrossRefGoogle Scholar
  14. 14.
    Park JH (2007a) An analysis of global robust stability of uncertain cellular neural networks with discrete and distributed delays. Chaos Solitons Fractals 32(2): 800–807MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Park JH (2007b) Further note on global exponential stability of uncertain cellular neural networks with variable delays. Appl Math Comput 188(1): 850–854MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Park JH, Kwon OM (2009) Synchronization of neural networks of neutral type with stochastic perturbation. Mod Phys Lett B 23(14): 1743–1751MATHCrossRefGoogle Scholar
  17. 17.
    Syed Ali M, Balasubramaniam P (2008) Robust stability for uncertain stochastic fuzzy BAM neural networks with time-varying delays. Phys Lett A 372(31): 5159–5166CrossRefMathSciNetGoogle Scholar
  18. 18.
    Wang J, Lu J (2008) Global exponential stability of fuzzy cellular neural networks with delays and reaction-diffusion terms. Chaos Solitons Fractals 38(3): 878–885MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Wang L, Xu D (2003) Asymptotic behavior of a class of reaction-diffusion equations with delay. J Math Anal Appl 281(2): 439–453MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Wang L, Xu D (2003) Global exponential stability of Hopfield reaction-diffusion neural networks with time-varying delays. Sci China (Series F) 46(6): 466–474MATHCrossRefGoogle Scholar
  21. 21.
    Wang S, Wang M (2006) A new detection algorithm (NDA) based on fuzzy cellular neural networks for white blood cell detection. IEEE Trans Inf Technol Biomed 10(1): 5–10CrossRefGoogle Scholar
  22. 22.
    Wang S, Fu D, Xu M, Hu D (2005) Applying Advanced Fuzzy Cellular Neural Network AFCNN to Segmentation of Serial CT Liver Images. In: Proceedings of ICNC, pp 1128–1131Google Scholar
  23. 23.
    Yang T, Yang L (1996) The global stability of fuzzy neural network. IEEE Trans Circuits Syst I 43(10): 880–883CrossRefGoogle Scholar
  24. 24.
    Yang T, Yang LB, Wu CW, Chua LO (1996a) Fuzzy cellular neural networks: theory. In: Proceedings of IEEE International Workshop on Cellular Neural Networks and Applications, pp 181–186Google Scholar
  25. 25.
    Yang T, Yang LB, Wu CW, Chua LO (1996b) Fuzzy cellular neural networks: applications. In: Proceedings of IEEE International Workshop on Cellular Neural Networks and Applications, pp 225–230Google Scholar
  26. 26.
    Yuan K, Cao J, Deng J (2006) Exponential stability and periodic solutions of fuzzy cellular neural networks with time-varying delays. Neurocomputing 69(13–15): 1619–1627CrossRefGoogle Scholar
  27. 27.
    Zhao H, Ding N, Chen L (2009) Almost sure exponential stability of stochastic fuzzy cellular neural networks with delays. Chaos Solitons Fractals 40(4): 1653–1659CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  1. 1.Institute of Applied MathematicsShijiazhuang Mechanical Engineering CollegeShijiazhuangPeople’s Republic of China

Personalised recommendations