Advertisement

Neural Processing Letters

, Volume 31, Issue 2, pp 147–157 | Cite as

Global Asymptotic Stability of Fuzzy Cellular Neural Networks with Unbounded Distributed Delays

  • Manchun Tan
Article

Abstract

Asymptotic stability problem of a class of fuzzy cellular neural networks with unbounded distributed delays is studied. New stability criteria are derived by employing a Lyapunov-Krasovskii functional and using LMI approach. Numerical examples are provided to illustrate the effectiveness and less conservativeness of the developed techniques.

Keywords

Global asymptotic stability Fuzzy cellular neural networks Unbounded distributed delays Linear matrix inequality(LMI) 

Mathematics Subject Classification (2000)

34K20 34K25 92B20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arik S (2006) Global asymptotic stability of hybrid bidirectional associative memory neural networks with time delays. Phys Lett A 351(1-2): 85–91CrossRefGoogle Scholar
  2. 2.
    Cao JD, Wang J (2005) Global exponential stability and periodicity of recurrent neural networks with time delays. IEEE Trans Circuits Syst I Regul Pap 52(5): 920–931CrossRefMathSciNetGoogle Scholar
  3. 3.
    Tan MC (2008) Asymptotic stability of nonlinear systems with unbounded delays. J Math Anal Appl 337(2): 1010–1021MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Tan MC, Zhang YN (2009) New sufficient conditions for global asymptotic stability of Cohen-Grossberg neural networks with time-varying delays. Nonlinear Anal Real World 10(4): 2139–2145MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Song QK, Wang ZD (2008) Neural networks with discrete and distributed time-varying delays: a general stability analysis. Chaos Solitons Fractals 37(5): 1538–1547MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    De Vries B, Principe JC (1992) The gamma model—a new neural model for temporal processing. Neural Netw 5(4): 565–576CrossRefGoogle Scholar
  7. 7.
    Zheng ZG, Wang J, Liao X (2005) Global asymptotic stability and global exponential stability of neural networks with unbounded time-varying delays. IEEE Trans Circuits Syst II 52(3): 168–173CrossRefGoogle Scholar
  8. 8.
    Huang TW, Li CD, Chen G (2007) Stability of Cohen-Grossberg neural networks with unbounded distributed delays. Chaos Solitons Fractals 34(3): 992–996MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Yang T, Yang LB, Wu CW, Chua LO (1996) Fuzzy cellular neural networks: theory. In: Proceedings of IEEE international workshop on cellular neural networks and applications, pp 181–186Google Scholar
  10. 10.
    Yang T, Yang LB, Wu CW, Chua LO (1996) Fuzzy cellular neural networks: applications. In: Proceedings of IEEE international workshop on cellular neural networks and applications, pp 225–230Google Scholar
  11. 11.
    Yang T, Yang LB (1996) Global stability of fuzzy cellular neural network. IEEE Trans Circuits Syst I Fundam Theory Appl 43(10): 880–883CrossRefGoogle Scholar
  12. 12.
    Feuring T, Buckley JJ, Lippe WM, Tenhagen A (1999) Stability analysis of neural net controllers using fuzzy neural networks. Fuzzy Sets Syst 101(2): 303–313MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Liu ZW, Zhang HG, Wang ZS (2009) Novel stability criterions of a new fuzzy cellular neural networks with time-varying delays. Neurocomputing 72(4–6): 1056–1064CrossRefGoogle Scholar
  14. 14.
    Yuan K, Cao JD, Deng JM (2006) Exponential stability and periodic solutions of fuzzy cellular neural networks with time-varying delays. Neurocomputing 69(13–15): 1619–1627CrossRefGoogle Scholar
  15. 15.
    Liu YQ, Tang WS (2004) Exponential stability of fuzzy cellular neural networks with constant and time-varying delays. Phys Lett A 323(3–4): 224–233MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Zhang Q, Xiang R (2008) Global asymptotic stability of fuzzy cellular neural networks with time-varying delays. Phys Lett A 372(22): 3971–3977CrossRefMathSciNetGoogle Scholar
  17. 17.
    Huang TW, Huang Y, Li CD (2008) Stability of periodic solution in fuzzy BAM neural networks with finite distributed delays. Neurocomputing 71(16–18): 3064–3069CrossRefGoogle Scholar
  18. 18.
    Huang TW (2006) Exponential stability of fuzzy cellular neural networks with distributed delay. Phys Lett A 351(1–2): 48–52CrossRefGoogle Scholar
  19. 19.
    Huang TW (2007) Exponential stability of delayed fuzzy cellular neural networks with diffusion. Chaos Solitons Fractals 31(3): 658–664MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Zhou QH, Wan L, Sun JH (2007) Exponential stability of reaction-diffusion fuzzy recurrent neural networks with time-varying delays. Int J Bifurcat Chaos 17(9): 3099–3108MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Lou X, Cui B (2007) Robust asymptotic stability of uncertain fuzzy BAM neural networks with time-varying delays. Fuzzy Sets Syst 158(24): 2746–2756MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Hou YY, Liao TL, Yan JJ (2007) Stability analysis of Takagi-Sugeno fuzzy cellular neural networks with time-varying delays. IEEE Trans Syst Man Cybern B Cybern 37(3): 720–726CrossRefMathSciNetGoogle Scholar
  23. 23.
    Boyd S, Ghaoui LE, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory. SIAM, PhiladelphiaMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  1. 1.Department of MathematicsJinan UniversityGuangzhouPeople’s Republic of China

Personalised recommendations