Skip to main content
Log in

Adapting RBF Neural Networks to Multi-Instance Learning

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In multi-instance learning, the training examples are bags composed of instances without labels, and the task is to predict the labels of unseen bags through analyzing the training bags with known labels. A bag is positive if it contains at least one positive instance, while it is negative if it contains no positive instance. In this paper, a neural network based multi-instance learning algorithm named RBF-MIP is presented, which is derived from the popular radial basis function (RBF) methods. Briefly, the first layer of an RBF-MIP neural network is composed of clusters of bags formed by merging training bags agglomeratively, where Hausdorff metric is utilized to measure distances between bags and between clusters. Weights of second layer of the RBF-MIP neural network are optimized by minimizing a sum-of-squares error function and worked out through singular value decomposition (SVD). Experiments on real-world multi-instance benchmark data, artificial multi-instance benchmark data and natural scene image database retrieval are carried out. The experimental results show that RBF-MIP is among the several best learning algorithms on multi-instance problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Alphonse S. Matwin (2004) ArticleTitleFiltering multi-instance problems to reduce dimensionality in relational learning Journal of Intelligent Information Systems 22 IssueID1 23–40 Occurrence Handle10.1023/A:1025876613117

    Article  Google Scholar 

  2. Amar, R. A., Dooly, D. R., Goldman, S. A. and Zhang, Q.: Multiple-instance learning of real-valued data, In: Proceedings of the 18th International Conference on Machine Learning, pp. 3–10, Williamstown, MA, 2001. [http://www.cs.wustl.edu/~sg/multi-inst-data]

  3. S. Andrews I. Tsochantaridis T. Hofmann (2003) Support vector machines for multiple-instance learning S. Becker S. Thrun K. Obermayer (Eds) Advances in Neural Information Processing Systems 15 MIT Press Cambridge, MA 561–568

    Google Scholar 

  4. Auer, P.: On learning from multi-instance examples: empirical evaluation of a theoretical approach, In: Proceedings of the 14th International Conference on Machine Learning, pp. 21–29, Nashville, TN, 1997.

  5. P. Auer P. M. Long A. Srinivasan (1998) ArticleTitleApproximating hyper-rectangles: learning and pseudo-random sets Journal of Computer and System Sciences 57 IssueID3 376–388 Occurrence Handle10.1006/jcss.1998.1593 Occurrence Handle2000e:68080

    Article  MathSciNet  Google Scholar 

  6. C. M. Bishop (1995) Neural Networks for Pattern Recognition Oxford University Press New York

    Google Scholar 

  7. Blake, C., Keogh, E. and Merz, C. J.: UCI repository of machine learning databases. Department of Information and Computer Science, University of California, Irvine, CA, 1998. [http://www.ics.uci.edu/~mlearn/MLRepository.html]

  8. A. Blum A. Kalai (1998) ArticleTitleA note on learning from multiple-instance examples Machine Learning 30 IssueID1 23–29 Occurrence Handle10.1023/A:1007402410823

    Article  Google Scholar 

  9. Y. Chevaleyre J.-D. Zucker (2001) Solving multiple-instance and multiple-part learning problems with decision trees and decision rules. Application to the mutagenesis problem E. Stroulia S. Matwin (Eds) Lecture Notes in Artificial Intelligence 2056 Springer Berlin 204–214

    Google Scholar 

  10. A. P. Dempster N. M. Laird D. B. Rubin (1977) ArticleTitleMaximum likelihood from incomplete data via the EM algorithm Journal of the Royal Statistics Society, Series B 39 IssueID1 1–38 Occurrence Handle58 #18858

    MathSciNet  Google Scholar 

  11. L. Raedt ParticleDe (1998) Attribute-value learning versus inductive logic programming: the missing links D. Page (Eds) Lecture Notes in Artificial Intelligence 1446 Springer Berlin 1–8

    Google Scholar 

  12. T. G. Dietterich R. H. Lathrop T. Lozano-Pérez (1997) ArticleTitleSolving the multiple-instance problem with axis-parallel rectangles Artificial Intelligence 89 IssueID1–2 31–71

    Google Scholar 

  13. D. R. Dooly S. A. Goldman S. S. Kwek (2001) Real-valued multiple-instance learning with queries N. Abe R. Khardon T. Zeugmann (Eds) Lecture Notes in Artificial Intelligence 2225 Springer Berlin 167–180

    Google Scholar 

  14. G. A. Edgar (1995) Measure, Topology, and Fractal Geometry Springer-Verlag Berlin

    Google Scholar 

  15. Gärtner, T., Flach, P. A., Kowalczyk, A. and Smola, A. J.: Multi-instance kernels, In: Proceedings of the 19th International Conference on Machine Learning, pp. 179–186, Sydney, Australia, 2002.

  16. S. A. Goldman S. S. Kwek S. D. Scott (2001) ArticleTitleAgnostic learning of geometric patterns Journal of Computer and System Sciences 62 IssueID1 123–151 Occurrence Handle10.1006/jcss.2000.1723 Occurrence Handle2002e:68050

    Article  MathSciNet  Google Scholar 

  17. S. A. Goldman S. D. Scott (2003) ArticleTitleMultiple-instance learning of real-valued geometric patterns Annals of Mathematics and Artificial Intelligence 39 IssueID3 259–290 Occurrence Handle10.1023/A:1024671512350 Occurrence Handle2004j:68086

    Article  MathSciNet  Google Scholar 

  18. I. T. Jollife (1986) Principle Component Analysis Springer-Verlag New York

    Google Scholar 

  19. Kearns, M. J.: Efficient noise-tolerant learning from statistical queries, In: Proceedings of the 25th Annual ACM Symposium on Theory of Computing, pp. 392–401, San Diego, CA, 1993.

  20. M. J. Kearns R. E. Schapire (1994) ArticleTitleEfficient distribution-free learning of probabilistic concepts Journal of Computer and System Sciences 48 IssueID3 464–497 Occurrence Handle10.1016/S0022-0000(05)80062-5 Occurrence Handle95m:68142

    Article  MathSciNet  Google Scholar 

  21. R. Lindsay B. Buchanan E. Feigenbaum J. Lederberg (1980) Applications of Artificial Intelligence to Organic Chemistry: The DENDRAL Project McGraw-Hill New York

    Google Scholar 

  22. P. M. Long L. Tan (1998) ArticleTitlePAC learning axis-aligned rectangles with respect to product distribution from multiple-instance examples Machine Learning 30 IssueID1 7–21 Occurrence Handle10.1023/A:1007450326753

    Article  Google Scholar 

  23. O. Maron (1998) Learning from Ambiguity Department of Electronical Engineering and Computer Science, MIT Cambridge, MA

    Google Scholar 

  24. O. Maron T. Lozano-Pérez (1998) A framework for multiple-instance learning M. I. Jordan M. J. Kearns S. A. Solla (Eds) Advances in Neural Information Processing Systems 10 MIT Press Cambridge, MA 570–576

    Google Scholar 

  25. Maron, O. and Ratan, A. L.: Multiple-instance learning for natural scene classification, In: Proceedings of the 15th International Conference on Machine Learning, pp. 341–349, Madison, WI, 1998.

  26. W. H. Press S. A. Teukolsky W. T. Vetterling B. P. Flannery (1992) Numerical Recipes in C: The Art of Scientific Computing EditionNumber2 Cambridge University Press New York

    Google Scholar 

  27. Ray, S. and Page, D.: Multiple instance regression, In: Proceedings of the 18th International Conference on Machine Learning, pp. 425–432, Williamstown, MA, 2001.

  28. G. Ruffo (2000) Learning single and multiple decision trees for security applications Department of Computer Science, University of Turin Italy

    Google Scholar 

  29. D. E. Rumelhart G. E. Hinton R. J. Williams (1986) Learning internal representations by error propagation D. E. Rumelhart J. L. McClelland (Eds) Parallel Distributed Processing: Explorations in the Microstructure of Cognition NumberInSeriesVol. 1 MIT Press Cambridge, MA 318–362

    Google Scholar 

  30. Sebag, M. and Rouveirol, C.: Tractable induction and classification in first order logic, In: Proceedings of the 15th International Joint Conference on Artificial Intelligence, pp. 888–893, Nagoya, Japan, 1997.

  31. Wang, J. and Zucker, J.-D.: Solving the multiple-instance problem: a lazy learning approach, In: Proceedings of the 17th International Conference on Machine Learning, pp. 1119–1125, San Francisco, CA, 2000.

  32. Yang, C. and Lozano- Pérez, T.: Image database retrieval with multiple-instance learning techniques, In: Proceedings of the 16th International Conference on Data Engineering, pp. 233–243, San Diego, CA, 2000.

  33. Q. Zhang S. A. Goldman (2002) EM-DD: an improved multiple-instance learning technique T. G. Dietterich S. Becker Z. Ghahramani (Eds) Advances in Neural Information Processing Systems 14 MIT Press Cambridge, MA 1073–1080

    Google Scholar 

  34. Zhang, Q., Yu, W., Goldman, S. A. and Fritts, J. E.: Content-based image retrieval using multiple-instance learning, In: Proceedings of the 19th International Conference on Machine Learning, pp. 682–689, Sydney, Australia, 2002.

  35. M.-L. Zhang Z.-H. Zhou (2004) ArticleTitleImprove multi-instance neural network through feature selection Neural Processing Letters 19 IssueID1 1–10 Occurrence Handle10.1023/B:NEPL.0000016836.03614.9f

    Article  Google Scholar 

  36. Z.-H. Zhou J. Wu W. Tang (2002) ArticleTitleEnsembling neural networks: many could be better than all Artificial Intelligence 137 IssueID1–2 239–263 Occurrence Handle1906477

    MathSciNet  Google Scholar 

  37. Z.-H. Zhou M.-L. Zhang (2002) Neural networks for multi-instance learning AI Lab, Computer Science & Technology Department, Nanjing University China

    Google Scholar 

  38. Z.-H. Zhou M.-L. Zhang (2003) Ensembles of multi-instance learners N. Lavrač D. Gamberger H. Blockeel L. Todorovski (Eds) Lecture Notes in Artificial Intelligence 2837 Springer-Verlag Berlin 492–502

    Google Scholar 

  39. Zucker, J.-D. and Ganascia, J.-G.: Changes of representation for efficient learning in structural domains, In: Proceedings of the 13th International Conference on Machine Learning, pp. 543–551, Bary, Italy, 1996.

  40. J.-D. Zucker J.-G. Ganascia (1998) Learning structurally indeterminate clauses D. Page (Eds) Lecture Notes in Artificial Intelligence 1446 Springer Berlin 235–244

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Hua Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, ML., Zhou, ZH. Adapting RBF Neural Networks to Multi-Instance Learning. Neural Process Lett 23, 1–26 (2006). https://doi.org/10.1007/s11063-005-2192-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-005-2192-z

Keywords

Navigation