Skip to main content
Log in

Data Fusion in Radial Basis Function Networks for Spatial Regression

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Conventional radial basis function (RBF) networks for spatial regression assume independent and identical distribution and ignore spatial information. In contrast to input fusion, we push spatial information further into RBF networks by fusing output from hidden and output layers. Three case studies demonstrate the advantage of hidden fusion over others and indicate the optimal value is around 1 for the coefficient used in hidden fusion, which links the output from the hidden layer for each site with their neighbors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RBF:

Radial Basis Function

MSE:

Mean Squared Error

iid:

independent and identical distribution

IF:

Input Fusion

HF:

Hidden Fusion

OF:

Output Fusion

References

  1. C. Ambroise G. Govaert (1998) ArticleTitleConvergence of an EM-type algorithm for spatial clustering Pattern Recognition Letters 19 IssueID10 919–927

    Google Scholar 

  2. L. Anselin (1988) Spatial Econometrics: Methods and Models Kluwer Academic Publishers Dordrecht

    Google Scholar 

  3. C. M. Bishop (1995) Neural Networks for Pattern Recognition Oxford University Press Dordrecht

    Google Scholar 

  4. A. De Carvalho M. M. Brizzotti (2001) ArticleTitleCombining RBF networks trained by different clustering techniques Neural Processing Letters 14 227–240

    Google Scholar 

  5. N. A. Cressie (1993) Statistics for Spatial Data Wiley New York

    Google Scholar 

  6. Ester, M., Kriegel, H. P. and Sander, J.: Spatial data mining: A database approach, In:Proceedings of 5th Symposium on Spatial Databases: 47–66, 1997.

  7. S. Geman D. Geman (1984) ArticleTitleStochastic relaxation, gibbs distributions and the bayesian restoration of images IEEE Transactions on Pattern Analysis and Machine Intelligence 6 721–741

    Google Scholar 

  8. N. Gilardi S. Bengio (2000) ArticleTitleLocal machine learning models for spatial data analysis Journal of Geographic Information and Decision Analysis 4 IssueID1 11–28

    Google Scholar 

  9. O. W. Gilley R. K. Pace (1996) ArticleTitleOn the harrison and rubinfeld data Journal of Environmental Economics and Management 31 403–405

    Google Scholar 

  10. D. Harrison D. L. Rubinfeld (1978) ArticleTitleHedonic prices and the demand for clean air Journal of Environmental Economics and Management 5 81–102

    Google Scholar 

  11. E. J. Hartman J. D. Keller J. M. Kowalski (1990) ArticleTitleLayered neural networks with gaussian hidden units as universal approximations Neural Computation 2 IssueID2 210–215

    Google Scholar 

  12. T. Hastie R. Tibshirani J. Friedman (2001) Elements of Statistical Learning: Data Mining Inference and Prediction Springer-Verlag, Berlin

    Google Scholar 

  13. Hermes, L. and Buhmann, J. M.: Contextual classification by entropy-based polygonization, In: Proceedings of the IEEE Conference on Computer Vision and Pattern recognition 2001, 442–447.

  14. A. K. Jain F. Farrokhnia (1991) ArticleTitleUnsupervised texture segmentation using gabor filters Pattern Recognition 24 IssueID12 1167–1186

    Google Scholar 

  15. Y. Jhung P. H. Swain (1996) ArticleTitleBayesian contextural classification based on modified m-estimates and markov random fields IEEE Transactions on Geoscience and Remote Sensing 34 IssueID1 67–75

    Google Scholar 

  16. L Kaufman P.J. Rousseeuw (1990) Finding Groups in Data: An Introduction to Cluster Analysis Wiley New York

    Google Scholar 

  17. Legendre, P.: Constrained clustering, In: Developments in Numerical Ecology, 289–307, NATO ASI Series G 14, (1987).

  18. LeSage, J. P.: MATLAB Toolbox for Spatial Econometrics, http: //www.spatial-econometrics.com, 1999.

  19. H. Leung G. Hennessey A. Drosopoulos (2000) Signal detection using the radial basis function coupled map lattice, IEEE Transactions on Neural Networks 11 IssueID5 1133–1151

    Google Scholar 

  20. M. A. Oliver R. Webster (1989) ArticleTitleA geostatistical basis for spatial weighting in multivariate classification Mathematical Geology 21 15–35

    Google Scholar 

  21. R. K. Pace R. Barry (1997) ArticleTitleQuick computation of spatial autoregressive estimators Geographical Analysis 29 232–247

    Google Scholar 

  22. T. Poggio F. Girosi (1990) ArticleTitleNetworks for approximation and learning Proceedings of the IEEE 78 IssueID9 1481–1497

    Google Scholar 

  23. Powell, M. J. D.: Radial basis functions for multivariable interpolation: A review, In: Algorithms for Approximation, 143–167, Clarendon Press, Oxford, (1987).

  24. Shekhar, S. and Chawla, S.: Spatial Databases: A Tour, Prentice-Hall, 2002.

  25. B. W. Silverman (1986) Density Estimation for Statistics and Data Analysis Chapman & Hall London

    Google Scholar 

  26. A. H. Solberg T. Taxt A. K. Jain (1996) ArticleTitleA markov random field model for classification of multisource satellite imagery IEEE Transactions on Geoscience and Remote Sensing 34 IssueID1 100–113

    Google Scholar 

  27. Y. Yan (1999) ArticleTitleUnderstanding speech recognition using correlation-generated neural network targets IEEE Transactions on Speech and Audio Processing 7 IssueID3 350–352

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianming Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, T., sung, S.Y. Data Fusion in Radial Basis Function Networks for Spatial Regression. Neural Process Lett 21, 81–93 (2005). https://doi.org/10.1007/s11063-004-7776-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-004-7776-5

Keywords

Navigation