Restoration of the Integrity of a Transected Peripheral Nerve with the Use of an Electric Welding Technology

Mechanical damage to the peripheral nerves, especially their transection, is a serious disabling injury, treatment of which and rehabilitation related to the consequences of such traumas are an urgent and important medical/social problem. In experiments on animals, we evaluated the effectiveness and safety of multiple-point epineural connection of segments of the transected sciatic nerve using an electric welding technology. Left-side transection of the above nerve at a middle third of the thigh was performed in adult albino mongrel male rats. The experimental groups were the following: intact animals (I, n = 5), those subjected to sham surgery (Sh, n = 6), rats with neurotomy and no additional interventions (NT, n = 21), neurotomy + epineural neurorrhaphy (NT+NR, n = 18), and neurotomy + electric welding of the nerve segments (NT+EW, n = 21). It was found that the EW connection provided fast and reliable fixation of the nerve segments with subsequent significant recovery of transmission via the injured nerve and progressing partial normalization of morphological characteristics of the fibers within a regenerative neuroma at the site of nerve transection; indices characterizing the density of nerve fibers and mean angle of their deviation from the longitudinal nerve axis were the best in the NT+EW group. Most intense positive changes in the sciatic functional index (SFI), an integrative index characterizing the level of functional disorders of locomotion-related movements performed by the hindlimb at the NT side, were observed in the NT+NR and NT+EW groups. Our data clearly showed that the efficiency of the welding connection of an injured nerve is at least not lower than that provided by neurorrhaphy; the dynamics of recovery after both operations are quite comparable. The EW connection is much simpler and does not require an exclusively high qualification of the surgeon; in the case of operations on nerves in humans, the respective surgery will require less time and will be less expensive.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    K. Bekelis, S. Missios, and R. J. Spinner, “Falls and peripheral nerve injuries: an age-dependent relationship,” J. Neurosurg., 123, No. 5, 1223–1229 (2015).

    Article  Google Scholar 

  2. 2.

    V. I. Tsymbaliuk, V. V. Medvediev, V. M. Semenova, et al., “A model of transverse hemisection of the spinal cord. Part I. Technical, pathomorphological, and clinical/experimental peculiarities,” Ukr.Neirokhirurg. Zh., 2, 18–27 (2016).

    Google Scholar 

  3. 3.

    С. H. Foster, M. Karsy, M. R. Jensen, et al., “Trends and cost-analysis of lower extremity nerve injury using the national inpatient sample,” Neurosurgery, 85, No. 2, 250–256 (2019); doi: https://doi.org/10.1093/neuros/nyy265.

  4. 4.

    R. M. McAllister, S. E. Gilbert, J. S. Calder, and P. J. Smith, “The epidemiology and management of upper limb peripheral nerve injuries in modern practice,” J. Hand Surg. Br., 21, No. 1, 4–13 (1996).

    CAS  Article  Google Scholar 

  5. 5.

    J. A. Kouyoumdjian, “Peripheral nerve injuries: a retrospective survey of 456 cases,” Muscle Nerve, 34, No. 6, 785–788 (2006).

  6. 6.

    C. A. Taylor, D. Braza, J. B. Rice, and T. Dillingham, “The incidence of peripheral nerve injury in extremity trauma,” Am. J. Phys. Med. Rehabil., 87, No. 5, 381–385 (2008).

    Article  Google Scholar 

  7. 7.

    T. Scholz, A. Krichevsky, A. Sumarto, et al., “Peripheral nerve injuries: an international survey of current treatments and future perspectives,” J. Reconstr. Microsurg., 25, No. 6, 339–344 (2009).

    Article  Google Scholar 

  8. 8.

    S. Saadat, V. Eslami, and V. Rahimi-Movaghar, “The incidence of peripheral nerve injury in trauma patients in Iran,” Ulus Travma Acil. Cerrahi. Derg., 17, No. 6, 539–544 (2011).

    Article  Google Scholar 

  9. 9.

    G. Antoniadis, T. Kretschmer, M. T. Pedro, et al., “Iatrogenic nerve injuries—prevalence, diagnosis and treatment,” Dtsch. Arztebl. Int., 111, No. 16, 273–279 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    M. L. Castillo-Galván, F. M. Martínez-Ruiz, O. de la Garza-Castro, et al., “Study of peripheral nerve injury in trauma patients,” Gac. Med. Mex., 150, No. 6, 527–532 (2014).

    PubMed  Google Scholar 

  11. 11.

    S. Missios, K. Bekelis, and R. J. Spinner, “Traumatic peripheral nerve injuries in children: epidemiology and socioeconomics,” J. Neurosurg. Pediatr., 14, No. 6, 688– 694 (2014).

    Article  Google Scholar 

  12. 12.

    K. Dalamagkas, M. Tsintou, and A. Seifalian, “Advances in peripheral nervous system regenerative therapeutic strategies: A biomaterials approach,” Mater. Sci. Eng. C: Mater. Biol. Appl., 65, 425–432 (2016); doi: https://doi.org/10.1016/j.msec.2016.04.048.

    CAS  Article  Google Scholar 

  13. 13.

    H. E. Rosberg, K. S. Carlsson, S. Höjgård, et al., “Injury to the human median and ulnar nerves in the forearm – analysis of costs for treatment and rehabilitation of 69 patients in southern Sweden,” J Hand Surg., 30, No. 1. 3 5–39 (2005).

  14. 14.

    I. Immerman, A.E. Price, I. Alfonso, and J. A. Grossman, “Lower extremity nerve trauma,” Bull. Hosp. Jt. Dis., 72, No. 1, 43–52 (2013).

    Google Scholar 

  15. 15.

    A. R. Wali, C. C. Park, J. M. Brown, and R. Mandeville, “Analyzing cost-effectiveness of ulnar and median nerve transfers to regain forearm flexion,” Neurosurg. Focus, 42 No. 3, E11 (2017); doi: https://doi.org/10.3171/2016.12.FOCUS16469.

  16. 16.

    J. M. Khalifeh, C. F. Dibble, C. J. Dy, and W. Z. Ray, “Cost-effectiveness analysis of combined dual motor nerve transfers versus alternative surgical and nonsurgical management strategies to restore shoulder function following upper brachial plexus injury,” Neurosurgery, 84, No. 2, 362–377 (2019); doi: https://doi.org/10.1093/neuros/nyy015.

  17. 17.

    S. K. Trehan, Z. Model and S. K. Lee, “Nerve repair and nerve grafting,” Hand Clin., 32, No. 2, 119–125 (2016); doi: https://doi.org/10.1016/j.hcl.2015.12.002.

    Article  PubMed  Google Scholar 

  18. 18.

    L. Rasulic, I. Cinara, M. Samardzic, et al., “Nerve injuries of the upper extremity associated with vascular trauma-surgical treatment and outcome,” Neurosurg. Rev., 40, No. 2, 241–249 (2017); doi: https://doi.org/10.1007/s10143-016-0755-2.

    Article  PubMed  Google Scholar 

  19. 19.

    M. J. Barton, J. W. Morley, M. A. Stoodley, et al., “Nerve repair: toward a sutureless approach,” Neurosurg. Rev., 37, No. 4, 585–595 (2014); doi: https://doi.org/10.1007/s10143-014-0559-1.

    Article  PubMed  Google Scholar 

  20. 20.

    R. Li, Z. Liu, Y. Pan, et al., “Peripheral nerve injuries treatment: a systematic review,” Cell Biochem. Biophys., 68, No. 3, 449–454 (2014); doi: https://doi.org/10.1007/s12013-013-9742-1.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    G. N. Panagopoulos, P. D. Megaloikonomos, and A. F. Mav-rogenis, “The present and future for peripheral nerve regeneration,” Orthopedics, 40, No. 1, e141–e156 (2017); doi: https://doi.org/10.3928/01477447-20161019-01.

  22. 22.

    С. A. Kubiak, T. A. Kung, D. L. Brown, et al., “State-ofthe-art techniques in treating peripheral nerve injury,” Plast. Reconstr. Surg., 141, No. 3, 702–710 (2018)

    CAS  Article  Google Scholar 

  23. 23.

    S. Chaudhry, K. R. Ipaktchi and A. Ignatiuk, “Updates on and controversies related to management of radial nerve injuries,” J. Am. Acad. Orthop. Surg., 27, No. 6, 280–284 (2019); doi: https://doi.org/10.5435/JAAOS-D-17-00325.

    Article  Google Scholar 

  24. 24.

    S. K. Narayan, M. Arumugam, and R. Chittoria, “Outcome of human peripheral nerve repair interventions using conduits: a systematic review,” J. Neurol. Sci., 396, 18–24 (2019); doi: https://doi.org/10.1016/j.jns.2018.10.012.

    Article  PubMed  Google Scholar 

  25. 25.

    R. Midha and J. Grochmal, “Surgery for nerve injury: current and future perspectives,” J. Neurosurg., 130, No. 3, 675–685 (2019); doi: https://doi.org/10.3171/2018.11.JNS181520.

    Article  PubMed  Google Scholar 

  26. 26.

    G. Y. Liu, Y. Jin, Q. Zhang, and R. Li, “Peripheral nerve repair: a hot spot analysis on treatment methods from 2010 to 2014,” Neural Regen. Res., 10, No. 6, 996– 1002 (2015); doi: https://doi.org/10.4103/1673-5374.158368.

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    A. Forli, M. Bouyer, M. Aribert, et al., “Upper limb nerve transfers: A review,” Hand Surg. Rehabil., 36, No. 3, 151–172 (2017); doi: https://doi.org/10.1016/j.hansur.2016.11.007.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    A. Eren, H. Atalar, C. M. Seymen, et al., “Sutureless approach with vein grafts and mesenchymal stem cells in primary nerve repair: Functional and immunohistological results,” Microsurgery, 38, No. 7, 780–789 (2018); doi: https://doi.org/10.1002/micr.30315.

  29. 29.

    J. D. Bloom, B. S. Bleier, S. A. Goldstein, et al., “Laser facial nerve welding in a rabbit model,” Arch. Facial Plast. Surg., 14, No. 1, 52–58 (2012); doi: https://doi.org/10.1001/archfacial.2011.61.

    Article  PubMed  Google Scholar 

  30. 30.

    N. G. Fairbairn, J. Ng-Glazier, A. M. Meppelink, et al., “Light-activated sealing of nerve graft coaptation sites improves outcome following large gap peripheral nerve injury,” Plast. Reconstr. Surg., 136, No. 4, 739–750 (2015); doi: https://doi.org/10.1097/PRS.0000000000001617.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    N. G. Fairbairn, J. Ng-Glazier, A. M. Meppelink, et al., “Light-activated sealing of acellular nerve allografts following nerve gap injury,” J. Reconstr. Microsurg., 32, No. 6, 421–430 (2016); doi: https://doi.org/10.1055/s-0035-1571247.

    Article  PubMed  Google Scholar 

  32. 32.

    C. Wang, S. Oh, H. A. Lee, et al., “In vivo feasibility test using transparent carbon nanotube-coated polydimethylsiloxane sheet at brain tissue and sciatic nerve,” J. Biomed. Mater. Res. A, 105, No. 6, 1736–1745 (2017); doi: https://doi.org/10.1002/jbm.a.36001.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    P. W. Henderson, “Immediate and complete restoration of peripheral nerve function after injury is attainable by a combination of surgical and chemical interventions,” Med. Hypotheses, 113, 65–67 (2018); doi: https://doi.org/10.1016/j.mehy.2017.10.032.

    Article  PubMed  Google Scholar 

  34. 34.

    N. J. Turner, S. A. Johnson, L. J. R. Foster, and S. F. Badylak, “Sutureless nerve repair with ECM bioscaffolds and laser-activated chitosan adhesive,” J. Biomed. Mater. Res. B Appl. Biomater., 106, No. 5, 1698–1711 (2018); doi: https://doi.org/10.1002/jbm.b.33975.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    W. Wang, L. Degrugillier, M. Tremp, et al., “Nerve Repair with fibrin nerve conduit and modified suture placement,” Anat. Rec. (Hoboken), 301, No. 10, 1690–1696 (2018); doi: https://doi.org/10.1002/ar.23921.

    CAS  Article  Google Scholar 

  36. 36.

    J. R. Soucy, E. S. Shirzaei, L. R. Portillo, et al., “Photocrosslinkable gelatin/tropoelastin hydrogel adhesives for peripheral nerve repair,” Tissue Eng. Part A, 24, Nos. 17–18, 1393–1405 (2018); doi: https://doi.org/10.1089/ten.TEA.2017.0502.

  37. 37.

    S. Frost, D. Mawad, J. Hook, et al., Micro- and nanostructured biomaterials for sutureless tissue repair,” Adv. Healthcare Mater., 5, No 4, 401–414 (2016).

  38. 38.

    Patent of Ukraine for a utility model No. 101487, MPK (2015.01), Method of restoring the spatial integrity of the injured peripheral nerve of adult male rats, V. I. TsymbalyukI, V. Yu. Molotkovets, V. V. Medvedev, et al., Published 09/10/2015 Bull. № 17.

  39. 39.

    N. N. Massarweh, N. Cosgriff, and D. P. Slakey, “Electrosurgery: history, principles, and current and future uses,” J. Am. Coll. Surg., 202, No. 3, 520–530 (2006).

    Article  Google Scholar 

  40. 40.

    Z. Okhunov, R. Yoon, A. Lusch, et al., “Evaluation and comparison of contemporary energy-based surgical vessel sealing devices,” J. Endourol., 32, No. 4, 329– 337 (2018); doi: https://doi.org/10.1089/end.2017.0596.

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    E. A. Kramer and M. E. Rentschler, “Energy-based tissue fusion for sutureless closure: applications, mechanisms, and potential for functional recovery,” Annu. Rev. Biomed. Eng., 20, 1–20 (2018); doi: https://doi.org/10.1146/annurevbioeng-071516-044702.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    A. S. Varejão, M. F. Meek, A. J. Ferreira, et al., “Functional evaluation of peripheral nerve regeneration in the rat: walking track analysis,” J. Neurosci Methods, 108, No. 1, 1–9 (2001).

    Article  Google Scholar 

  43. 43.

    Patent of Ukraine for a utility model No. 118157 MPK: G09B 23/28, Device for conducting the “walk on a track” test. V. Yu. Molotkovets, V. I. Tsumbalyuk, and V. V. Medvedev, publ. 25.07.2017, Bull. No. 14.

  44. 44.

    Patent of Ukraine for a utility model No. 111515 MPK: G09B 23/28, A method of calculation of the sciatic nerve functional index in rats, V. I. Tsumbalyuk, V. Yu. Molotkovets, and V. V. Medvedev, publ. 25.07.2017, Bull. No. 14.

  45. 45.

    A. K. Kolomiytsev, “A rapid technique of impregnation of the peripheral nerve elements by silver nitrate, which is applicable for celloidin and paraffin slices,” Arkh. Anat. Gistol. Embriol., No. 8, 93 – 96 (1981).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Molotkovets.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Molotkovets, V.Y., Medvediev, V.V., Korsak, A.V. et al. Restoration of the Integrity of a Transected Peripheral Nerve with the Use of an Electric Welding Technology. Neurophysiology (2020). https://doi.org/10.1007/s11062-020-09848-3

Download citation

Keywords

  • peripheral nerve
  • transection
  • neurorrhaphy
  • electric welding connection of biological tissues
  • electroneuromyography
  • morphometry
  • sciatic functional index
  • regenerative process