Effects of Nanoparticle and Conventional-Size Suspensions of MgO and ZnO on Recognition Memory in Mice

We examined the effects of nano forms of magnesium oxide (nano-MgO) and zinc oxide (nano-ZnO) on recognition memory in mice and also the levels of Mg2+ and Zn2+ ions in the blood serum and cerebral tissue of the animals. Adult male NMRI mice were divided into control groups and those treated with suspensions of the above nano- and also conventional forms of the above oxides (1 and 5 mg/kg). The components were injected i.p. once in the test day or three times during the training days. The novel object recognition test was used for evaluating the memory. The levels of Mg2+and Zn2+ were measured in the serum and brain hemispheres of animals at the end of the test. Nano-MgO (5 mg/kg) improved recognition memory more markedly than conv-MgO injection on the test day and during the training sessions, with increasing Mg2+ levels in the brain hemispheres. Nano- and conv-ZnO increased recognition memory only at administration in the test day, while the Zn2+ level in the brain hemispheres significantly increased in the presence of all doses of conv-ZnO and nano-ZnO injected in the test day and during the training session. In the serum, the Zn2+ concentration significantly increased after injections of conv-ZnO or nano-ZnO (1 and 5 mg/kg) in comparison with that in the saline group injected in the test day. Thus, the ability of nano-MgO and nano-ZnO to increase the levels of Mg2+ and Zn2+ in the brain hemispheres is greater than that of their conventional forms, and this factor may affect results of the recognition memory test.

This is a preview of subscription content, log in to check access.


  1. 1.

    W. Xiong, Y. Liang, X. Li, G. Liu, and Z. Wang, “Erythrocyte intracellular Mg2+ concentration as an index of recognition and memory,” Sci. Rep., 6, 26975, (2016). DOI: https://doi.org/10.1038/srep26975.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    I. Slutsky, N. Abumaria, L. Wu, et al., “Enhancement of learning and memory by elevating brain magnesium,” Neuron,65, No. 2, 165-177 (2010). DOI: https://doi.org/10.1016/j.neuron.2009.12.026.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    S.D. Gower-Winter and C. W. Levenson, “Zinc in the central nervous system: From molecules to behavior,” Biofactors,38, No. 186-193 (2012). DOI:https://doi.org/10.1002/biof.1012.

  4. 4.

    H. Vural, H. Demirin, Y. Kara, I. Eren, and N. Delibas, “Alterations of plasma magnesium, copper, zinc, iron and selenium concentrations and some related erythrocyte antioxidant enzyme activities in patients with Alzheimer’s disease,” J. Trace. Elem. Med Biol.,24, No. 3, 169-173 (2010). DOI:https://doi.org/10.1016/j.jtemb.2010.02.002.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    W. Li, J. Yu, Y. Liu, et al., “Elevation of brain magnesium prevents synaptic loss and reverses cognitive deficits in Alzheimer’s disease mouse model,” Mole Brain, 7, 65 (2014). DOI: https://doi.org/10.1186/s13041-014-0065-y.

    CAS  Article  Google Scholar 

  6. 6.

    Y. Yang, X. P. Jing, S. P. Zhang, et al., “High dose zinc supplementation induces hippocampal zinc deficiency and memory impairment with inhibition of BDNF signaling,” PLoS One,8 , No. 1, e55384 (2013). DOI:https://doi.org/10.1371/journal.pone.0055384.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    R. S. Kumaran, Y. K. Choi, V. Singh, et al., “In vitro cytotoxic evaluation of MgO nanoparticles and their effect on the expression of ROS genes,” Int. J. Mol. Sci.,16, No. 4, 7551-7564 (2015). DOI: https://doi.org/10.3390/ijms16047551.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    M. Kimiaee Sadr, M. Mirhosseini, and G. Rahimi, “Effects of combination of magnesium and zinc oxide nanoparticles and heat on Escherichia coli and Staphylococcus aureus bacteria in milk,” Nanomed. J., 3, No. 1, 49-56 (2016). DOI: https://doi.org/10.7508/nmj.2016.01.006.

    CAS  Article  Google Scholar 

  9. 9.

    H. Teymuri Zamaneh, M. Kesmati, H. Malekshahi Nia, et al., “Investigating the effects of chronic magnesium oxide nanoparticles on aerobic exercise-induced antinociception in adult male rats,” Int. J. Green Pharm.,11, No. 4, (Suppl.), S892 (2017). DOI: https://doi.org/10.22377/ijgp.v11i04.1423

  10. 10.

    L. Jahangiri, M. Kesmati, and H. Najafzadeh, “Evaluation of analgesic and anti-inflammatory effect of nanoparticles of magnesium oxide in mice with and without ketamine,” Eur. Rev. Med. Pharmacol. Sci.,17, No. 20, 2706-2710, (2013). [PubMed: 24174350].

  11. 11.

    M. Torabi, M. Kesmati, H. E. Harooni, and H. N. Varzi, “Different efficacy of nanoparticle and conventional ZnO in an animal model of anxiety,” Neurophysiology,45, No. 4, 299-305 (2013). DOI:https://doi.org/10.1007/s11062-013-9372-7.

    CAS  Article  Google Scholar 

  12. 12.

    M. Ghobadian, M. Nabiuni, K. Parivar, et al., “Toxic effects of Mg2+ oxide nanoparticles on early developmental and larval stages of zebrafish (Danio rerio),” Ecotoxicol. Environ. Saf., 122, 260-267 (2015). DOI: https://doi.org/10.1016/j.ecoenv.2015.08.009.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    M. Horie, K. Fujita, H. Kato, et al., “Association of the physical and chemical properties and the cytotoxicity of metal oxide nanoparticles: metal ion release, adsorption ability and specific surface area,” Metallomics, 4, No. 4, 350-360 (2012). DOI: https://doi.org/10.1039/c2mt20016c.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    A. Karmakar, Q. Zhang, and Y. Zhang, “Neurotoxicity of nanoscale materials,” J. Food Drug Anal.,22, No. 1, 147-160 (2014). DOI: https://doi.org/10.1016/j.jfda.2014.01.012.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    S. Moeini-Nodeh, M. Rahimifard, M. Baeeri, and M. Abdollahi , “Functional improvement in rats’ pancreatic islets using MgO nanoparticles through antiapoptotic and antioxidant pathways,” Biol. Trace Elem. Res.,175, No. 1, 146-155 (2017). DOI: https://doi.org/10.1007/s12011-016-0754-8.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    N. Eisapare, M. Kasmati, and T. Mohammadi, “Comparison of the effects of pre-training administration of zinc oxide and zinc oxide nanoparticles on long-term memory of adult male mice,” J. Babol. Univ. Med. Sci.,18, No.1, 37-43 (2016).

    Google Scholar 

  17. 17.

    M. Kesmati, Z. Sargholi Notarki, N. Issapareh, and M. Torabi, “Comparison the effect of zinc oxide and magnesium oxide nano particles on long term memory in adult male mice,” Zahedan J. Res. Med. Sci.,18, No. 9, e3473 (2016). DOI: https://doi.org/10.17795/zjrms-3473.

    CAS  Article  Google Scholar 

  18. 18.

    M. Kesmati, F. Zadehdarvish, Z. Jelodar, and M. Torabi, “Vitamin C potentiates sedative effect of magnesium oxide nanoparticles on anxiety and nociception in the postpartum depression model,” Nanomed. J., 4, No. 1, 17-24 (2017). DOI: https://doi.org/10.7508/nmj.2016.03.001.

    CAS  Article  Google Scholar 

  19. 19.

    M. Torabi, M. Kesmati, N. Pourreza, et al., “Neurobehavioral and biochemical modulation following administration of MgO and ZnO nanoparticles in the presence and absence of acute stress,” Life Sci., 203, 72-82 (2018). DOI: https://doi.org/10.1016/j.lfs.2018.04.023.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    M. Kesmati, M. Konani, M. Torabi, and L. Khajehpour, “Magnesium oxide nanoparticles reduce anxiety induced by morphine withdrawal in adult male mice,” Physiol. Pharmacol.,20, No. 3, 197-205 (2016). URL: http:// phypha. ir/ppj/article-1-1164-en.html.

  21. 21.

    S. Valipour Chahardahcharic, M. Kesmati, A. Vahdati, and S.E. Hoseini, “The effects of acute administration of zinc oxide nanoparticles on long term memory in the presence and absence of vitamin C in adult male rat,” Adv. Environ. Biol., 8, No. 13, 260-266 (2014).

    CAS  Google Scholar 

  22. 22.

    N. Hashemi-Firouzi, M. Akhavan, A. Komaki, and S. Shahidi, “Effects of acute administration of urtica dioica on the novel object recognition task in mice,” Avi. J. Neuro. Psycho. Physiol., 2, No. 3, e34150 (2015). DOI: https://doi.org/10.17795/ajnpp-34150.

  23. 23.

    M. Torabi, S. M. Firoozan, and M. Kesmati, “Effect of lecithin consumption during pregnancy and lactation on novel object recognition behavior among male and female rat offspring,” Arak. Med. Univ. J., 16, No. 12, 9-17 (2014).

    Google Scholar 

  24. 24.

    T. Huang and Y. Hsueh, “Novel object recognition for studying memory in mice,” Bio-Protocol., 4, No. 19, e1249, (2014). DOI: https://doi.org/10.21769/BioProtoc.

  25. 25.

    M. Antunes and G. Biala, “The novel objects recognition memory: neurobiology, test procedure, and its modifications,” Cogn. Process.,13, No. 2, 93-110 (2012). DOI https://doi.org/10.1007/s10339-011-0430-z.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    N. J. Broadbent, S. Gaskin, L. R. Squire, and R. E. Clark, “Object recognition memory and the rodent hippocampus,” Learn. Mem., 17, No. 1, 5-11 (2009). DOI: https://doi.org/10.1101/lm.1650110.

    Article  PubMed  Google Scholar 

  27. 27.

    Y. Zhao, L. Li, P. F. Zhang, et al., “ Differential regulation of gene and protein expression by zinc oxide nanoparticles in hen’s ovarian granulosa cells: specific roles of nanoparticles,” PLoS ONE, 10, No. 10, e0140499 (2015). DOI:https://doi.org/10.1371/journal.pone.0140499.

  28. 28.

    L. Zhang, F. X. Gu, J. M. Chan, et al., “Nanoparticles in medicine: therapeutic applications and developments, Clin. Pharmacol. Ther.,83, No. 5, 761-769 (2008). DOI: https://doi.org/10.1038/sj.clpt.6100400.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    A. J. Linsenbardt, M. Chisari, A. Yu, et al., “Noncompetitive, voltage-dependent NMDA receptor antagonism by hydrophobic anions,” Mol. Pharmacol., 83, No. 2, 354-366 (2013). DOI: https://doi.org/10.1124/mol.112.081794. Epub 2012 Nov 9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    I. Slutsky, S. Sadeghpour, B. Li, and G. Liu, “Enhancement of synaptic plasticity through chronically reduced Ca2+ flux during uncorrelated activity,” Neuron, 44, No. 5, 835-849 (2004). DOI:https://doi.org/10.1016/j.neuron.2004.11.013.

  31. 31.

    M. Rodriguez-Munoz, E. de la Torre-Madrid, P. Sanchez-Blazquez, et al., “NMDAR-nNOS generated zinc recruits PKC gamma to the HINT1-RGS17 complex bound to the C terminus of Mu-opioid receptors,” Cell. Signal., 20, No. 10, 1855-1864 (2008). DOI: https://doi.org/10.1016/j.cellsig.2008.06.015.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    I. Slutsky, N. Abumaria, L. J. Wu, et al., “Enhancement of learning and memory by elevating brain magnesium,” Neuron, 65, No. 2, 165-77 (2010). DOI: https://doi.org/10.1016/j.neuron.2009.12.026.

Download references

Author information



Corresponding author

Correspondence to M. Torabi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kesmati, M., Torabi, M., Pourreza, N. et al. Effects of Nanoparticle and Conventional-Size Suspensions of MgO and ZnO on Recognition Memory in Mice. Neurophysiology (2020). https://doi.org/10.1007/s11062-020-09847-4

Download citation


  • brain
  • mice
  • MgO
  • ZnO
  • nanoparticles
  • conventional suspensions
  • recognition memory
  • novel object recognition