Skip to main content

Advertisement

Log in

Effects of Eugenol on Alzheimer’s Disease-like Manifestations in Insulin- and Aβ-Induced Rat Models

  • Published:
Neurophysiology Aims and scope

Eugenol is a phenylpropene having antidepressant properties. We investigated the effect of eugenol on amyloid plaques as a hallmark of Alzheimer’s disease (AD) in two AD rat models. In the latter, betaamyloid (Aβ) and insulin amyloid fibrils were injected into the rat hippocampus. After a one week lapse, the rats were treated with 0.01 and 0.02 mg/kg eugenol for two weeks. Passive avoidance learning and memory performance was assessed by measuring the step-through latency (STL). Amyloid plaques in the hippocampus were quantitatively evaluated and statistically analyzed using image processing software and ANOVA. Aβ amyloid was a more potent inducer of the signs related to Alzheimer’s disease than insulin. Eugenol at a 0.01 mg/kg dose improved memory and reduced the number of amyloid plaques significantly (P < 0.001). Possible mechanisms are proposed for the inhibitory effects of eugenol on hippocampus plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Selkoe and P. Lansbury, Alzheimer’s Disease Is the Most Common Neurodegenerative Disorder, Lippincott-Raven, Philadelphia (1999).

    Google Scholar 

  2. C. A. Thompson, K. Spilsbury, J. T. Hall, et al., “Systematic review of information and support interventions for caregivers of people with dementia,” BMC Geriatr., 7, No. 1, 18 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  3. M. Medina, Z. S. Khachaturian, M. Rossor, et al., “Toward common mechanisms for risk factors in Alzheimer’s syndrome,” Alzheimers Dement. (N.Y.), 3 , No. 4, 571–578 (2017).

    Google Scholar 

  4. H. Eichenbaum, A. P. Yonelinas, and C. Ranganath, “The medial temporal lobe and recognition memory,” Annu. Rev. Neurosci., 30, 123–152 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Y.-L. Gao, N. Wang, F.-R. Sun, et al., “Tau in neurodegenerative disease,” Ann. Transl. Med., 6, No. 10, 175 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. E. Tönnies and E. Trushina, “Oxidative stress, synaptic dysfunction, and Alzheimer’s disease,” J. Alzheimers Dis., 57, No. 4, 1105–1121 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. J. Barnes, L. A. Anderson, and J. D. Phillipson, Herbal Medicines, Pharmaceutical Press, London (2007).

    Google Scholar 

  8. B. K. Jadhav, K. R. Khandelwal, A. R. Ketkar, and S. S. Pisal, “Formulation and evaluation of mucoadhesive tablets containing eugenol for the treatment of periodontal diseases,” Drug Dev. Ind. Pharm., 30, No. 2, 195–203 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. G. Tao, Y. Irie, D.-J. Li, and W. M. Keung, “Eugenol and its structural analogs inhibit monoamine oxidase A and exhibit antidepressant-like activity,” Bioorg. Med. Chem., 13, No. 15, 4777–4788 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Z. Liu, W. Niu, X. Yang, and Y. Wang, “Effects of combined acupuncture and eugenol on learning-memory ability and antioxidation system of hippocampus in Alzheimer disease rats via olfactory system stimulation,” J. Trad. Chin. Med., 33, No. 3, 399–402 (2013).

    Article  Google Scholar 

  11. M. Bouchard, J. Zurdo, E. Nettleton, et al., “Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy,” Protein Sci., 9, No. 10, 1960–1967 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. G. Paxinos and C. Watson, The Rat Brain Atlas in Stereotaxic Coordinates, Acad. Press, San Diego (1998).

    Google Scholar 

  13. F. Cetin and S. Dincer, “The effect of intrahippocampal beta amyloid (1-42) peptide injection on oxidant and antioxidant status in rat brain,” Ann. N.Y. Acad. Sci., 1100, No. 1, 510–517 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. R. Kheirbakhsh, M. Chinisaz, S. Khodayari, et al., “Injection of insulin amyloid fibrils in the hippocampus of male Wistar rats: report on memory impairment and formation of amyloid plaques,” Neurol. Sci., 36, No. 8, 1411–1416 (2015).

    Article  PubMed  Google Scholar 

  15. J.-H. Bach, H. S. Chae, J. C. Rah, et al., “C-terminal fragment of amyloid precursor protein induces astrocytosis,” J. Neurochem., 78, No. 1, 109–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. E. Solito and M. Sastre, “Microglia function in Alzheimer’s disease,” Front. Pharmacol., 3, No. 14 (2012), doi: https://doi.org/10.3389/fphar.2012.00014.

  17. S. A. Frautschy, F. Yang, L. Calderón, and G. M. Cole, “Rodent models of Alzheimer’s disease: rat Aβ infusion approaches to amyloid deposits,” Neurobiol. Aging, 17, No. 2, 311–321 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. H. Ramshini, A. S. Moghaddasi, L. S. Aldaghi, et al., “Silver nano particles ameliorate learning and spatial memory of male Wistar rats by prevention of amyloid fibril-induced neurotoxicity,” Arch. Ital. Biol., 155, No. 3, 131–141 (2017).

    CAS  PubMed  Google Scholar 

  19. M. Stefani and S. Rigacci, “Protein folding and aggregation into amyloid: the interference by natural phenolic compounds,” Int. J. Mol. Sci., 14, No. 6, 12411–12457 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. K. Balasubramanian, “Molecular orbital basis for yellow curry spice curcumin’s prevention of Alzheimer’s disease,” J. Agric. Food Chem., 54, No. 10, 3512–3520 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. S. A. Hudson, H. Ecroyd, F. C. Dehle, et al., “(−)-Epigal-locatechin-3-gallate (EGCG) maintains κ-casein in its pre-fibrillar state without redirecting its aggregation pathway,” J. Mol. Biol., 392, No. 3, 689–700 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. M. Dumont and M. F. Beal, “Neuroprotective strategies involving ROS in Alzheimer disease,” Free Radic. Biol. Med., 51, No. 5, 1014–1026 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. R. Deane and B. V. Zlokovic, “Role of the blood-brain barrier in the pathogenesis of Alzheimer’s disease,” Curr. Alzheimer Res., 4, No. 2, 191–197 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Y. Irie, N. Itokazu, N. Anjiki, et al., “Eugenol exhibits antidepressant-like activity in mice and induces expression of metallothionein-III in the hippocampus,” Brain Res., 1011, No. 2, 243–246 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. S. Dohi, M. Terasaki, and M. Makino, “Acetylcholinesterase inhibitory activity and chemical composition of commercial essential oils,” J. Agric. Food Chem., 57, No. 10, 4313–4318 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. E. Paradis, H. Douillard, M. Koutroumanis, et al., “Amyloid β peptide of Alzheimer’s disease downregulates Bcl-2 and upregulates Bax expression in human neurons,” J. Neurosci., 16, No. 23, 7533–7539 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Yaghmaei or A. Ebrahim-Habibi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri, P., Yaghmaei, P., Tehrani, H.S. et al. Effects of Eugenol on Alzheimer’s Disease-like Manifestations in Insulin- and Aβ-Induced Rat Models. Neurophysiology 51, 114–119 (2019). https://doi.org/10.1007/s11062-019-09801-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-019-09801-z

Keywords

Navigation