Skip to main content
Log in

Involvement of Serotonin 5-HT7 Receptors in Learning and Memory in Mice

  • Published:
Neurophysiology Aims and scope

Serotonin (5-HT) is involved in memory processing via different types of its receptors within brain regions. We investigated the role of 5-HT7 receptors in acquisition, consolidation, and retrieval phases in the passive avoidance (PA) learning and memory test in mice. Adult male mice (body mass 20–35 g) were randomly divided into four experimental groups (n = 10 in each). Animals of the control group received saline, while other groups of mice received SB-269970 (a selective 5-HT7 receptor antagonist, 10 mg/kg, i.p.) 15 min before training, immediately after training, and 24 h after the acquisition trial. Numbers of trials to acquisition (NT), initial entry latency into the dark compartment in the learning phase, step-through latency, and time of stay in the dark compartment in the retention phase of the PA test (STLr and TDC, respectively) were measured. The number of trials to acquisition in the group receiving SB-269970 before training showed no significant differences in comparison with the control group. The STLr in the group receiving SB-269970 after training was significantly greater, while its TDC was shorter than in the control. There were no significant differences in the STLr and TDC between the control and SB-269970 group receiving the blocker before retrieval. It is concluded that blocking of 5-HT7 receptors could improve consolidation of the passive avoidance memory, but this procedure exerted no significant effects on acquisition and retrieval in the PA test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. McDonald and N. S. Hong, “How does a specific learning and memory system in the mammalian brain gain control of behavior?” Hippocampus, 23, 1084–1102 (2013).

    Article  PubMed  Google Scholar 

  2. E. G. Antzoulatos and J. H. Byrne, “Learning insights transmitted by glutamate,” Trends Neurosci., 27, 555–560 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. T. Myhrer, “Neurotransmitter systems involved in learning and memory in the rat: a meta-analysis based on studies of four behavioral tasks,” Brain Res. Brain Res. Rev., 41, 268–287 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. M. Berger, J. A. Gray, and B. L. Roth, “The expanded biology of serotonin,” Annu. Rev. Med., 60, 355–366 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. D. Hoyer, J. P. Hannon, and G. R. Martin, “Molecular, pharmacological and functional diversity of 5-HT receptors,” Pharmacol. Biochem. Behav., 71, 533–554 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. J. D. McCorvy, and B. L. Roth, “Structure and function of serotonin G protein-coupled receptors,” Pharmacol. Ther., 150, 129–142 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. Filip and M. Bader, “Overview on 5-HT receptors and their role in physiology and pathology of the central nervous system,” Pharmacol. Rep., 61, 761–777 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. A. Brenchat, X. Nadal, L. Romero, et al., “Pharmacological activation of 5-HT7 receptors reduces nerve injury-induced mechanical and thermal hypersensitivity,” Pain, 149, 483–494 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. J. M. Monti, M. Leopoldo, H. Jantos, and P. Lagos, “Microinjection of the 5-HT7 receptor antagonist SB-269970 into the rat brainstem and basal forebrain: site-dependent effects on REM sleep,” Pharmacol. Biochem. Behav., 102, 373–380 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. S. Doly, J. Fischer, M. J. Brisorgueil, et al., “Pre- and postsynaptic localization of the 5-HT7 receptor in rat dorsal spinal cord: immunocytochemical evidence,” J. Comp. Neurol., 490, 256–269 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. A. Wesołowska, A. Nikiforuk, and K. Stachowicz, “Potential anxiolytic and antidepressant effects of the selective 5-HT7 receptor antagonist SB 269970 after intrahippocampal administration to rats,” Eur. J. Pharmacol., 553, 185–190 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. A. Wesołowska, A. Nikiforuk, K. Stachowicz, and E. Tatarczyńska, “Effect of the selective 5-HT7 receptor antagonist SB 269970 in animal models of anxiety and depression,” Neuropharmacology, 51, 578–586 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. A. Wesołowska and M. Kowalska, “Influence of serotonin 5-HT(7) receptor blockade on the behavioral and neurochemical effects of imipramine in rats,” Pharmacol. Rep., 60, 464–474 (2008).

    PubMed  Google Scholar 

  14. Q. J. Zhang, C. X. Du, H. H. Tan, et al., “Activation and blockade of serotonin7 receptors in the prelimbic cortex regulate depressive-like behaviors in a 6-hydroxy-dopamine-induced Parkinson’s disease rat model,” Neuroscience, 311, 45–55 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. A. O. el-Kadi and S. I. Sharif, “The role of 5-HT in the expression of morphine withdrawal in mice,” Life Sci., 57, 511–516 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. S. Shahidi and N. Hashemi-Firouzi, “The effects of a 5-HT7 receptor agonist and antagonist on morphine withdrawal syndrome in mice,” Neurosci. Lett., 578, 27–32 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. A. J. Roberts, T. Krucker, C. L. Levy, et al., “Mice lacking 5-HT receptors show specific impairments in contextual learning,” Eur. J. Neurosci., 19, 1913–1922 (2004).

    Article  PubMed  Google Scholar 

  18. G. Sarkisyan and P. B. Hedlund, “The 5-HT7 receptor is involved in allocentric spatial memory information processing,” Behav. Brain Res., 202, 26–31 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. L. Speranza, J. Labus, F. Volpicelli, et al., “Serotonin 5-HT7 receptor increases the density of dendritic spines and facilitates synaptogenesis in forebrain neurons,” J. Neurochem., 141, 647–661 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. N. Hashemi-Firouzi, A. Komaki, S. Soleimani Asl, and S. Shahidi, “The effects of the 5-HT7 receptor on hippocampal long-term potentiation and apoptosis in a rat model of Alzheimer’s disease,” Brain Res. Bull., 135, 85–91 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. G. S. Perez-Garcia and A. Meneses, “Effects of the potential 5-HT7 receptor agonist AS 19 in an autoshaping learning task,” Behav. Brain Res., 163, 136–140 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. C. Carbone, A. Adinolfi, S. Cinque, et al., “Activation of 5-HT7 receptor by administration of its selective agonist, LP-211, modifies explorative-curiosity behavior in rats in two paradigms which differ in visuospatial parameters,” CNS Neurosci. Ther., 24, 712–720 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. T. M. Eriksson, A. Golkar, G. C. Ekstrom, et al., “5-HT7 receptor stimulation by 8-OH-DPAT counteracts the impairing effect of 5-HT(1A) receptor stimulation on contextual learning in mice,” Eur. J. Pharmacol., 596, 107–110 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. G. Perez-Garcia and A. Meneses, “Memory time-course: mRNA 5-HT1A and 5-HT7 receptors,” Behav. Brain Res., 202, No. 1, 102–113 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. T. Freret, E. Paizanis, G. Beaudet, et al., “Modulation of 5-HT7 receptor: effect on object recognition performances in mice,” Psychopharmacology, 231, 393–400 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. S. J. Ballaz, H. Akil, and S. J. Watson, “The 5-HT7 receptor: role in novel object discrimination and relation to novelty-seeking behavior,” Neuroscience, 149, 192–202 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. A. Gasbarri, A. Cifariello, A. Pompili, and A.Meneses, “Effect of 5-HT 7 antagonist SB-269970 in the modulation of working and reference memory in the rat,” Behav. Brain Res., 195, No. 1, 164–170 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. A. Komaki, S. A. Karimi, I. Salehi, et al., “The treatment combination of vitamins E and C and astaxanthin prevents high-fat diet induced memory deficits in rats,” Pharmacol. Biochem. Behav., 131, 98–103 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. M. Mahmoodi, S. Shahidi, and P. Hasanein, “Involvement of the ventral tegmental area in the inhibitory avoidance memory in rats,” Physiol. Behav., 102, 542–547 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. S. Shahidi, S. S. Asl, A. Komaki, and N. Hashemi-Firouzi, “The effect of chronic stimulation of serotonin receptor type 7 on recognition, passive avoidance memory, hippocampal long-term potentiation, and neuronal apoptosis in the amyloid beta protein treated rat,” Psychopharmacology, 235, 1513–1525 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. F. Ghahremanitamadon, S. Shahidi, S. Zargooshnia, et al., “Protective effects of Borago officinalis extract on amyloid beta-peptide(25-35)-induced memory impairment in male rats: a behavioral study,” Biomed. Res. Int., 2014, 1–8 (2014).

    Article  Google Scholar 

  32. S. Barzegar, A. Komaki, S. Shahidi, et al., “Effects of cannabinoid and glutamate receptor antagonists and their interactions on learning and memory in male rats,” Pharmacol. Biochem. Behav., 131, 87-90 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. N. Khodamoradi, A. Komaki, I. Salehi, et al., “Effect of vitamin E on lead exposure-induced learning and memory impairment in rats,” Physiol. Behav., 144, 90–94 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. S. Shahidi, S. Setareye, and M. Mahmoodi, “Effect of Prunus domestica L. (mirabelle) on learning and memory in mice,” Anc. Sci. Life., 32, 139–143 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. S. Shahidi, S. Zargooshnia, S. S. Asl, et al., “Influence of N-acetylcysteine on beta-amyloid-induced Alzheimer’s disease in a rat model: A behavioral and electrophysiological study,” Brain Res. Bull., 131, 142–149 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. T. Horisawa, T. Ishibashi, H. Nishikawa, et al., “The effects of selective antagonists of serotonin 5-HT7 and 5-HT1A receptors on MK-801-induced impairment of learning and memory in the passive avoidance and Morris water maze tests in rats: mechanistic implications for the beneficial effects of the novel atypical antipsychotic lurasidone,” Behav. Brain Res., 220, 83–90 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. A. Meneses, “Effects of the 5-HT7 receptor antagonists SB-269970 and DR 4004 in autoshaping Pavlovian/instrumental learning task,” Behav. Brain Res., 155, No. 2, 275–282 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Y. Shen, F. J. Monsma, M. A. Metcalf, et al., “Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype,” J. Biol. Chem., 268, 18200–18204 (1993).

    CAS  PubMed  Google Scholar 

  39. M. Matsumoto, T. Kojima, H. Togashi, et al., “Differential characteristics of endogenous serotonin-mediated synaptic transmission in the hippocampal CA1 and CA3 fields of anaesthetized rats,” Naunyn Schmiedebergs Arch. Pharmacol., 366, 570–577 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. K. Tokarski, A. Zelek-Molik, B. Duszynska, et al., “Acute and repeated treatment with the 5-HT7 receptor antagonist SB 269970 induces functional desensitization of 5-HT7 receptors in rat hippocampus,” Pharmacol. Rep.., 64, 256–265 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. J. A. Bard, J. Zgombick, N. Adham, et al., “Cloning of a novel human serotonin receptor (5-HT7) positively linked to adenylate cyclase,” J. Biol. Chem., 268, 23422–23426 (1993).

    CAS  PubMed  Google Scholar 

  42. P. B. Hedlund and J. G. Sutcliffe, “Functional, molecular and pharmacological advances in 5-HT7 receptor research,” Trends Pharmacol. Sci., 25, 481–486 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. A. Meneses, “5-HT systems: emergent targets for memory formation and memory alterations,” Rev. Neurosci., 24, 629–664 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. A. J. Roberts, and P. B. Hedlund, “The 5-HT(7) receptor in learning and memory,” Hippocampus, 22, 762–771 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. J. F. Neumaier, T. J. Sexton, J. Yracheta, et al., “Localization of 5-HT(7) receptors in rat brain by immunocytochemistry, in situ hybridization, and agonist stimulated cFos expression,” J. Chem. Neuroanat., 21, 63–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. T. F. Freund and G. Buzsaki, “Interneurons of the hippocampus,” Hippocampus, 6, 347–470 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. K. Tokarski, M. Kusek, and G. Hess, “5-HT7 receptors modulate GABAergic transmission in rat hippocampal CA1 area,” J. Physiol. Pharmacol., 62, 535–540 (2011).

    CAS  PubMed  Google Scholar 

  48. K. Tokarski, A. Zahorodna, B. Bobula, and G. Hes, “5-HT7 receptors increase the excitability of rat hippocampal CA1 pyramidal neurons,” Brain Res., 993, 230–234 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. F. Kobe, D. Guseva, T. P. Jensen, et al., “5-HT7R/G12 signaling regulates neuronal morphology and function in an age-dependent manner,” J. Neurosci., 32, 2915–2930 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. N. A. Otmakhova, J. Lewey, B. Asrican, and J. E. Lisman, “Inhibition of perforant path input to the CA1 region by serotonin and noradrenaline,” J. Neurophysiol., 94, 1413–1422 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mahmoodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahidi, S., Mahmoodi, M. & Sadeghimehr, N. Involvement of Serotonin 5-HT7 Receptors in Learning and Memory in Mice. Neurophysiology 51, 77–82 (2019). https://doi.org/10.1007/s11062-019-09796-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-019-09796-7

Keywords

Navigation