Skip to main content
Log in

Conditions of Switching between Local Electric Activity Modes in the Dendritic Membrane of Hippocampal Pyramidal Neurons: A Simulation Study

  • Published:
Neurophysiology Aims and scope

On a computer model of an isolated dendrite segment populated by ion channels inherent in the hippocampus CA3 pyramidal neurons, the possibility and conditions of switching between different modes of intrinsic local activity induced by tonic synaptic excitation were investigated. Depending on the synaptic intensity, these were modes of generation of persistent low- or high-level depolarization or of steady oscillations of the membrane potential. The switches between the modes could be accomplished by application of depolarizing or hyperpolarizing currents of certain critical values. These currents from an extrinsic generator mimicked intrinsic axial core currents, which provide electrical coupling between the segments incorporated in a complex structure of the dendritic branching. Subcriticalintensity currents could change the persistent depolarization levels, frequency, and amplitude of steady oscillations of the membrane potential, but could not switch between the above-mentioned modes of activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Johnston, J. C. Magee, C. M. Colbert, and B. R. Christie, “Active properties of neuronal dendrites,” Annu. Rev. Neurosci., 19, 165-186 (1996).

    Article  CAS  Google Scholar 

  2. B. Sakmann, “From single cells and single columns to cortical networks: dendritic excitability, coincidence detection and synaptic transmission in brain slices and brains,” Exp. Physiol., 102, No. 5, 489-521 (2017).

    Article  Google Scholar 

  3. E. van Lunteren and T. E. Dick, “Intrinsic properties of pharyngeal and diaphragmatic respiratory motoneurons and muscles,” J. Appl. Physiol. 73(No. 3), 787-800 (1992).

    Article  Google Scholar 

  4. R. R. Llinás, “Intrinsic electrical properties of mammalian neurons and CNS function: a historical perspective,” Front. Cell Neurosci., 8, 320 (2014).

    Article  Google Scholar 

  5. Ö. Bernander, J. R. Douglas, K. A. C. Martin, and C. Koch, “Synaptic background activity influences spatiotemporal integration in single pyramidal neurons in vivo,” Proc. Natl. Acad. Sci., 88, 11569-11573 (1991).

    Article  CAS  Google Scholar 

  6. A. Destexhe, M. Rudolph and D. Paré, “The highconductance state of neocortical neurons in vivo,” Nat. Rev. Neurosci., 4, 739-751 (2003).

    Article  CAS  Google Scholar 

  7. S. A. Prescott, S. Ratté, Y. De Koninck, and T. J. Sejnowski, “Pyramidal neurons switch from integrators in vitro to resonators under in vivo-like conditions,” J. Neurophysiol., 100, 3030-3042 (2008).

    Article  Google Scholar 

  8. S. M. Korogod and S. Tyč-Dumont, Electrical Dynamics of the Dendritic Space, Cambridge Univ. Press, Cambridge, New York, Melbourne (2009).

    Book  Google Scholar 

  9. I. B. Kulagina, A. V. Kaspirzhny, and S. M. Korogod, “Organization of activity of hippocampal pyramidal neurons under coactiavtion of dendritic glutamateand GABA-sensitive receptors: a simulation study,” Neurophysiology, 46, No. 2, 99-107 (2014).

    Article  CAS  Google Scholar 

  10. I. B. Kulagina, S. M. Korogod, G. Horcholle-Bossavitt, et al., “The electro-dynamics of the dendritic space in Purkinje cells of the cerebellum,” Arch. Ital. Biol., 145, Nos. 3/4, 211-233 (2007).

    CAS  PubMed  Google Scholar 

  11. A. V. Kaspirzhnyi, “Local oscillatory properties of the dendritic membrane of hippocampal pyramidal neurons: a simulation study,” Neurophysiology, 49 , No. 3, 178-182 (2018).

    Article  Google Scholar 

  12. N. T. Carnevale and M. L. Hines, The NEURON Book, Cambridge Univ. Press, Cambridge (2006).

    Book  Google Scholar 

  13. P. Hemond, D. Epstein, A. Boley, et al., “Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3b,” Hippocampus, 18, No. 4, 411-424 (2008).

    Article  Google Scholar 

  14. B. E. Peterson, M. D. Healy, P. M. Nadkarni, et al., “ModelDB: an environment for running and storing computational models and their results applied to neuroscience,” J. Amer. Med. Inform. Assoc., 3, 389-398 (1996).

    Article  CAS  Google Scholar 

  15. W. Rall and H. Agmon-Snir. “Cable theory for dendritic neurons”. In: Methods in Neuronal Modeling: From Ions to Networks, C. Koch and I. Segev, eds.; Cambridge, Massachusetts: The MIT Press, 251-291 (1998).

  16. S. M. Korogod and A. V. Kaspirzhny, “Spatial heterogeneity of passive electrical transfer properties of neuronal dendrites due to their metrical asymmetry,” Biol. Cybern. 105, Nos. 5-6, 305–317 (2011).

    Article  Google Scholar 

  17. M. W. H. Remme, M. Lengyel, and B. S. Gutkin, “The role of ongoing dendritic oscillations in single-neuron dynamics,” PLoS Comput. Biol., 5, No. 9, e1000493 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kaspirzhnyi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaspirzhnyi, A.V. Conditions of Switching between Local Electric Activity Modes in the Dendritic Membrane of Hippocampal Pyramidal Neurons: A Simulation Study. Neurophysiology 50, 152–158 (2018). https://doi.org/10.1007/s11062-018-9731-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-018-9731-5

Keywords

Navigation