Skip to main content
Log in

EEG Differences Between Eyes-Closed and Eyes-Open Conditions at the Resting Stage for Euthymic Participants

  • Published:
Neurophysiology Aims and scope

Most prior research examined differences in the EEG frequency bands between eyes-closed and eyesopen conditions at the resting state as a baseline; without counter checking on the mental health state of the subjects; the depressive symptoms were often not assessed or controlled during the experiment. We examined EEGs of euthymic participants (who were free from the psychiaric symptoms) for the above two conditions at the resting state. A population of participants with healthy levels of depression, anxiety, and stress symptoms (n = 50) has been examined with the Patient Health Questionnaire-9 (PHQ-9) and Depression Anxiety Stress Scale-21 (DASS-21). The powers of the alpha rhythm, interpreted as relaxation waves, were higher during eyes-closed compared to eyes-open condition (P = 0.0…) in all brain regions (32 EEG channels). The prefrontal cortex was characterized by higher delta, theta, and beta powers during eyes-open periods at the resting state, as compared with eyes-closed ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. U. Berger, “Ber das Elektrenkephalogramm des Menschen,” Arch. F. Psychiat., 98, 231-254 (1993).

    Article  Google Scholar 

  2. E. D. Adrian and B. H. C. Matthews, “The Berger rhythm: potential changes from the occipital lobes in man,” Brain, 57, 355-385 (1934).

    Article  Google Scholar 

  3. H. H. Jasper, “Cortical excitatory state and variability in human brain rhythms,” Science, 83, 259-260 (1936).

    Article  CAS  PubMed  Google Scholar 

  4. J. R. Smith, “The electroencephalogram during normal infancy and childhood: II. The nature of the growth of the alpha waves,” J. Gen. Psychol., 53, 455-469 (1938).

    Google Scholar 

  5. R. M. Chapman, J. C. Armington, and H. R. Bragdon, “A quantitative survey of kappa and alpha EEG activity,” Electroencephalogr. Clin. Neurophysiol., 14, 858-868 (1962).

    Article  CAS  PubMed  Google Scholar 

  6. J. Volavka, M. Matoušek, and J. Roubíček, “Mental arithmetic and eye opening. An EEG frequency analysis and GSR study,” Electroencephalogr. Clin. Neurophysiol., 22, 174-176 (1967).

    Article  CAS  PubMed  Google Scholar 

  7. H. Legewie, O. Simonova, and O. D. Creutzfeldt, “EEG changes during performance of various tasks under open and closed eyes conditions,” Electroencephalogr. Clin. Neurophysiol., 27, 470-479 (1969).

    Article  CAS  PubMed  Google Scholar 

  8. A. Glass and A. E. Kwiatkowski, “Power spectral density changes in the EEG during mental arithmetic and eyeopening,” Psychol. Forsch., 33, 85-90 (1970).

    Article  CAS  PubMed  Google Scholar 

  9. A. Gale, M. Coles, and E. Boyd, “Variation in visual input and the occipital EEG,” II. Psychon. Sci., 23, 99-100 (1971).

    Article  Google Scholar 

  10. W. Hardle, T. Gasser, and P. Bacher, EEG responsiveness to eye opening and closing in mildy retarded children compared to a control group,” Biol. Psychol., 18, 185-199 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. R. J. Barry, A. R. Clarke, S. J. Johnstone, and C. R. Brown, “EEG differences between eyes-closed and eyes-open resting conditions,” Clin. Neurophysiol., 118, 2765-2773 (2007), doi:https://doi.org/10.1016/j.clinph.2009.08.006.

    Article  PubMed  Google Scholar 

  12. R. J. Barry, A. R. Clarke, S. J. Johnstone, and C. R. Brown, “EEG differences in children between eyes-closed and eyes-open resting conditions,” Clin. Neurophysiol., Offic. J. Int. Fed. Clin. Neurophysiol., 120, No. 10, 1806-1811 (2009), doi:https://doi.org/10.1016/j.clinph.2009.08.006.

    Article  Google Scholar 

  13. S. Galderisi, A. Mucci, P. Bucci, et al., “Quantitative EEG test dose procedure in the prediction of response to treatment with antipsychotic drugs,” Psychiat. Res. NeuroImaging, 68, 162-163 (1997).

    Article  Google Scholar 

  14. J. R. Hughes and E. R. John, “Conventional and quantitative electroencephalography in psychiatry,” J. Neuropsychiat. Clin. Neurosci., 11, 190-208 (1999).

    Article  CAS  Google Scholar 

  15. J. B. Henriques and R. J. Davidson, “Left frontal hypoactivation in depression,” J. Abnorm. Psychol., 100, No. 4, 535-545 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. S. Debener, A. Beauducel, D. Nessler, et al., “Is resting anterior EEG alpha asymmetry a trait marker for depression? Findings for healthy adults and clinically depressed patients,” Neuropsychobiology, 41, 31-37 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. V. Knott, C. Mahoney, S. Kennedy, and K. Evans, “EEG power, frequency, asymmetry and coherence in male depression,” Psychiat. Res., 106, 123-140 (2001).

    Article  CAS  Google Scholar 

  18. J. J. B. Allen, H. L. Urry, S. K. Hitt, and J. A. Coan, “The stability of resting frontal electroencephalographic asymmetry in depression,” Psychophysiology, 41, 269-280 (2004).

    Article  PubMed  Google Scholar 

  19. M. Vuga, N. A. Fox, J. F. Cohn, et al., “Long-term stability of frontal electroencephalographic asymmetry in adults with a history of depression and controls,” Int. J. Psychophysiol., 59, 107-115 (2006).

    Article  PubMed  Google Scholar 

  20. A. H. Kemp, K. Griffiths, K. L. Felmingham, et al., “Disorder specificity despite comorbidity: Resting EEG alpha asymmetry in major depressive disorder and posttraumatic stress disorder,” Biol. Psychol., 85, No. 2, 350-354 (2010), doi:https://doi.org/10.1016/j.biopsycho.2010.08.001.

    Article  CAS  PubMed  Google Scholar 

  21. A. A. Fingelkurts, H. Rytsälä, K. Suominen, et al., “Composition of brain oscillations in ongoing EEG during major depression disorder,” Neurosci. Res., 56, No. 2, 133-144 (2006), doi:https://doi.org/10.1016/j.neures.2006.06.006.

    Article  PubMed  Google Scholar 

  22. D. Begic, V. Popovi, J. Grubi, et al., “Quantitative electroencephalography,” Psychiat. Danubina, 23, No. 4, 355-362 (2011).

    Google Scholar 

  23. A. C. N. Chen, W. Feng, H. Zhao, et al., “EEG default mode network in the human brain: Spectral regional field powers,” NeuroImage, 41, 561-574 (2008).

    Article  PubMed  Google Scholar 

  24. S. M. El-Badri, C. H. Ashton, P. B. Moore, et al., “Electrophysiological and cognitive function in young euthymic patients with bipolar affective disorder,” Bipolar Disord., 3, No. 2, 79-87 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. K. Kroenke, R. L. Spitzer, and J. B. W. Williams, “The PHQ-9. Validity of a brief depression severity measure,” J. Gen. Int. Med., 16, 606-613 (2001).

    Article  CAS  Google Scholar 

  26. J. R. Crawford and J. D. Henry, “The depression anxiety stress scales (DASS): Normative data and latent structure in a large non-clinical sample,” Br. J. Clin. Psychol., 42, 111-131 (2003).

    Article  PubMed  Google Scholar 

  27. F. Mukhtar and T. P. S. Oei, “A review on assessment and treatment for depression in Malaysia,” Depress. Res. Treatment, 1-8 (2011), doi:10.1155/2011/123642.

  28. G. Assenza, G. Pellegrino, M. Tombini, et al., “Delta waves increase after cortical plasticity induction during wakefulness,” Clin. Neurophysiol., 124, No. 11, 71-72 (2013), doi:https://doi.org/10.1016/j.clinph.2014.09.029.

    Article  Google Scholar 

  29. B. Güntekin and E. Başar, “Review of evoked and event-related delta responses in the human brain,” Int. J. Psychophysiol. (2015), doi:https://doi.org/10.1016/j.ijpsycho.2015.02.001.

  30. B. Güntekin and E. Başar, “A review of brain oscillations in perception of faces and emotional pictures,” Neuropsychologia, 58, 33-51 (2014), doi:https://doi.org/10.1016/j.neuropsychologia.2014.03.014.

    Article  PubMed  Google Scholar 

  31. M. A. Klados, C. Frantzidis, A. B. Vivas, et al., “A framework combining delta event-related oscillations(EROs) and synchronisation effects,” Computat. Intel. Neurosci., 16 (2009) (Article ID 549419).

  32. B. Güntekin and E. Başar, “Brain oscillations are highly influenced by gender differences,” Int. J. Psychophysiol., 65, 294-299 (2007).

    Article  PubMed  Google Scholar 

  33. R. J. M. Somsen, B. J. van’t Klooster, M. W. van der Molen, et al., “Growth spurts in brain maturation during middle childhood as indexed by EEG power spectra,” Biol. Psychol., 44, No. 3, 187-209 (1997), doi:http://dx.doi.org/10.1016/S0301-0511(96)05218-0.

    Article  CAS  PubMed  Google Scholar 

  34. J. Yordanova and V. Kolev, “Developmental changes in the event-related EEG theta response and P300,” Electroencephalogr. Clin. Neurophysiol./Evoked Potentials Sect., 104, No. 5, 418-430 (1997), doi:https://doi.org/10.1016/S0168-5597(97)00054-3.

    Article  CAS  Google Scholar 

  35. J. Yordanova and V. Kolev, “Developmental changes in the theta response system: A single sweep analysis,” J. Psychophysiol., 12, No. 2, 113-126 (1998), Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-0031725170&partnerID=tZOtx3y1.

    Google Scholar 

  36. Z. X. Liu, S. Woltering, and M. D. Lewis, “Developmental change in EEG theta activity in the medial prefrontal cortex during response control,” NeuroImage, 85, No. 2, 873-887 (2014), doi:https://doi.org/10.1016/j.neuroimage.2013.08.054.

    Article  PubMed  Google Scholar 

  37. K. Sasaki, A. Nambu, T. Tsujimoto, et al., “Studies on integrative functions of the human frontal association cortex with MEG,” Cogn. Brain Res., 5, 165-174 (1996).

    Article  CAS  Google Scholar 

  38. L. I. Aftanas, A. A. Varlamov, S. V. Pavlov, et al., “Affective picture processing: event-related synchronization within individually defined human theta band is modulated by valence dimension,” Neurosci. Lett., 303, 115-118 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. C. Mulert, G. Juckel, M. Brunnmeier, et al., “Rostral anterior cingulate cortex activity in the theta band predicts response to antidepressive medication,” Clin. EEG Neurosci., 38, 78-81 (2007b).

    Article  PubMed  Google Scholar 

  40. D. A. Pizzagalli, T. R. Oakes, and R. J. Davidson, “Coupling of theta activity and glucose metabolism in the human rostral anterior cingulate cortex: an EEG/PET study of normal and depressed subjects,” Psychophysiology, 40, 939-949 (2003).

    Article  PubMed  Google Scholar 

  41. E. Basar and M. Schurmannn, “Cross-modality experiments in humans,” in: Brain Function and Oscillations: II. Integrative Brain Function, Neurophysiology and Cognitive Processes, E. Basar (ed.) Springer, Berlin (1999).

    Chapter  Google Scholar 

  42. C. Neuper and G. Pfurtscheller, “Event-related dynamics of cortical rhythms: Frequency-specific features and functional correlates,” Int. J. Psychophysiol., 43, 41-58 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. J. Fan, J. Byrne, M. S. Worden, et al., “The relation of brain oscillations to attentional networks,” J. Neurosci., 27, 6197-6206 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. B. E. Kilavik, M. Zaepffel, A. Brovelli, et al., “The ups and downs of beta oscillations in sensorimotor cortex,” Exp. Neurol., 245, 15-26 (2013), doi:https://doi.org/10.1016/j.expneurol.2012.09.014.

    Article  PubMed  Google Scholar 

  45. S. Weiss and H. M. Mueller, “Too many betas do not spoil the broth: The role of beta brain oscillations in language processing,” Front. Psychol., 3, 201 (2012), http://doi.org/10.3389/fpsyg.2012.00201.

    Article  PubMed  PubMed Central  Google Scholar 

  46. S. Hanslmayr, T. Staudigl, and M.-C. Fellner, “Oscillatory power decreases and long-term memory: the information via desynchronization hypothesis,” Front. Human Neurosci., 6, 74 (2012), http://doi.org/10.3389/fnhum.2012.00074.

    Article  Google Scholar 

  47. S. Gerhand, “The prefrontal cortex—executive and cognitive functions,” Brain, 122, No. 5, 994-995 (1999), Retrieved from http://brain.oxfordjournals.org/content/122/5/994.abstract.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. F. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kan, D.P.X., Croarkin, P.E., Phang, C.K. et al. EEG Differences Between Eyes-Closed and Eyes-Open Conditions at the Resting Stage for Euthymic Participants. Neurophysiology 49, 432–440 (2017). https://doi.org/10.1007/s11062-018-9706-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-018-9706-6

Keywords

Navigation