Skip to main content

Advertisement

Log in

Neuroprotective Effects of Macrovipera lebetina Snake Venom in the Model of Alzheimer’s Disease

  • Published:
Neurophysiology Aims and scope

Pathological features of Alzheimer’s disease (AD) include accumulation and deposition of β-amyloid (Aβ) in the brain, activation of astrocytes and microglia, and disruption of cholinergic neurotransmission. In our experiments on rats, a model of AD was created by intracerebroventricular (i.c.v.) injections of Aβ25–35 amyloid. In another animal group, this was combined with intramuscular (i.m.) injections of small doses of Macrovipera lebetina (ML) snake venom (50 μl of 5% solution of an LD50 dose per animal seven times with one-day-long intervals). In the AD model, the most vulnerable neurons were found in the hippocampal fields CA1 and CA3. The phosphatase activity in the hippocampus of Aβ-injected rats sharply dropped. Systemic administration of small doses of ML venom induced positive changes in the structural characteristics of hippocampal neurons, increased the density of neurons in the above fields, normalized metabolism, and intensified Ca2+-dependent phosphorylation. Under the action of ML venom, the proportion of responses of hippocampal pyramidal neurons after high-frequency tetanic stimulation of the ipsilateral entorhinal cortex in the form of tetanic depression–posttetanic potentiation increased, and an overall increase in the firing rate of hippocampal neurons was observed. The intensity of free radical processes in some tissues of Aβ-affected animals became much lower under the action of ML venom. Thus, small doses of this venom manifest clear neuroprotective effects in the rat AD model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Asadi, A. H. Jamshidi, F. Khodagholi, et al., “Reversal effects of crocin on amyloid β-induced memory deficit: Modification of autophagy or apoptosis markers,” Pharmacol. Biochem. Behav., 15, 30083-30086 (2015).

    Google Scholar 

  2. J. H. Morrison and P. R. Hof, “Life and death of neurons in the aging cerebral cortex,” Int. Rev. Neurobiol., 81, 41-57 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. J. Shen and J. Wu, “Nicotinic cholinergic mechanisms in Alzheimer’s disease,” Int. Rev. Neurobiol., 124, 275-292 (2015).

    Article  PubMed  Google Scholar 

  4. J. M. Craft, D. M. Watterson, and L. J. Van Eldik, “Human amyloid β-induced neuroinflammation is an early event in neurodegeneration,” Glia, 53, 484-490 (2006).

    Article  PubMed  Google Scholar 

  5. E. Detrait, T. Maurice, E. Hanon, et al., “Lack of synaptic vesicle protein SV2B protects against amyloid-β25–35-induced oxidative stress, cholinergic deficit and cognitive impairment in mice,” Behav. Brain Res., 271, 277-285 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. M. Pallas and A. Camins, “Molecular and biochemical features in Alzheimer’s disease,” Current Pharm. Des., 12, 4389-408 (2006).

    Article  CAS  Google Scholar 

  7. M. Nagashima, S. Yasuhara, and J. A. Martyn, “Trainof-four and tetanic fade are not always a prejunctional phenomenon as evaluated by toxins having highly specific pre- and postjunctional actions,” Anesth. Analg., 116, 994-1000 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. P. Treppmann, I. Brunk, T. Afube, et al., “Neurotoxic phospholipases directly affect synaptic vesicle function,” J. Neurochem., 117, 757-764 (2011).

    CAS  PubMed  Google Scholar 

  9. R. Chen and S. E. Robinson, “The effect of cobrotoxin on cholinergic neurons in the mouse,” Life Sci., 51, 1013-1019 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. N. A. Ghazaryan, L. A. Ghulikyan, and N. M. Ayvazyan, “Morphological changes of proteolipid giant unilamellar vesicles affected by Macrovipera lebetina obtusa venom visualized with fluorescence microscope,” J. Membrane Biol., 246, 627-632 (2013).

    Article  CAS  Google Scholar 

  11. N. Vardjan, M. Mattiazzi, and E. Rowan, “Neurotoxic phospholipase A2 toxicity model: An insight from mammalian cells,” Commun. Integr. Biol., 6, e23600 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  12. N. A. Ghazaryan, L. Ghulikyan, A. Kishmiryan, et al., “Phospholipases A2 from Viperidae snakes: Differences in membranotropic activity between enzymatically active toxin and its inactive isoforms,” BBA-Biomembranes, 1848, 463-468 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. L. Sanz, N. Ayvazyan, and J. J. Calvete, “Snake venomics of the Armenian mountain vipers Macrovipera lebetina obtusa and Vipera raddei,” J. Proteomics, 71, 198-209 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. H. A. Bimonte-Nelson, A. C. Granholm, M. E. Nelson, and A. B. Moore, “Patterns of neurotrophin protein levels in male and female Fischer 344 rats from adulthood to senescence: how young is ‘young’ and how old is ‘old’?” Exp. Aging Res., 34, 13-26 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  15. T. Kurtovic, M. L. Balija, N. M. Ayvazyan, and B. Halassy, “Paraspecificity of Vipera ammodytesspecific antivenom towards Montivipera raddei and Macrovipera lebetina obtusa venoms,” Toxicon, 78, 103-112 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. T. Maurice, B. Lockhar, T. Su, and A. Privat, “Reversion of β25–35-amyloid peptide-induced amnesia by NMDA receptor-associated glycine site agonists,” Brain Res., 731, 249-253 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. T. Maurice and A. Privat, “Sigma1 (sigma 1) receptor agonists and neurosteroids attenuate beta25–35-amyloid peptide-induced amnesia in mice through a common mechanism,” Neuroscience, 83, 413-428 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. K. Yenkoyan, K. Safaryan, V. Chavushyan, et al., “Neuroprotective action of proline-rich polypeptide-1 in β-amyloid induced neurodegeneration in rats,” Brain Res. Bull., 86, 262-271 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. A. Chilingaryan, A. M. Chilingaryan, and G. G. Martin, “The three-dimensional detection of microvasculatory bed in the brain of white rat Rattus norvegicus by a Ca2+-ATPase method,” Brain Res., 1070, 131-138 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. G. Paxinos and Ch. Watson, The Rat Brain in Stereotaxic Coordinates, Acad. Press, New York (2005).

    Google Scholar 

  21. L. Slomianka, T. Drenth, N. Cavegn, et al., “The hippocampus of the eastern rock sengi: cytoarchitecture, markers of neuronal function, principal cell numbers, and adult neurogenesis,” Front. Neuroanat., 29, 34 (2013), doi: https://doi.org/10.3389/fnana.2013.00034.

    Google Scholar 

  22. D. M. Mann, “Pyramidal nerve cell loss in Alzheimer’s disease,” Neurodegeneration, 5, 423-427 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. T. C. Wen, J. Tanaka, H. Peng, et al., “Interleukin 3 prevents delayed neuronal death in the hippocampal CA1 field,” J. Exp. Med., 188, 635-649 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. H. M. Schipper, D. E. Scarborough, R. M. Lechan, and S. Reichlin, “Gomori-positive astrocytes in primary culture: effects of in vitro age and cysteamine exposure,” Brain Res. Dev. Brain Res., 54, 71-79 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. K. Sugaya, M. Chouinard, R. Greene, et al., “Molecular indices of neuronal and glial plasticity in the hippocampal formation in a rodent model of age-induced spatial learning impairment,” J. Neurosci., 16, 3427-3443 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. G. Bergers and S. Song, “The role of pericytes in bloodvessel formation and maintenance,” Neurol. Oncol., 7, 452-464 (2005).

    Article  CAS  Google Scholar 

  27. W. Kamphuis, J. Middeldorp, and L. Kooijman, “Glial fibrillary acidic protein isoform expression in plaque related astrogliosis in Alzheimer’s disease,” Neurobiol. Aging, 35, 492-510 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. V. V. Banin, “Neoplasm of vessels: cellular and molecular mechanisms of regulation,” Morfologia (S. Petersburg), Materials of VІ Congress of Int. Ass. of Morphologists, Кolos readings, 18 (2002).

  29. P. Bianco, M. Riminucci, S. Gronthos, and P. G. Robey, “Bone marrow stromal stem cells: nature, biology, and potential applications,” Stem Cells, 19,180-192 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. M. Tolnay and F. Clavaguera, “Argyrophilic grain disease: a late-onset dementia with distinctive features among tauopathies,” Neuropathology, 24, 269-283 (2004).

    Article  PubMed  Google Scholar 

  31. W. F. Gattaz, L. L. Talib, E. L. Schaeffer, et al., “Low platelet iPLA activity predicts conversion from mild cognitive impairment to Alzheimer’s disease: a 4-year follow-up study,” J. Neural. Transm., 121, 193-200 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. L. L. Talib, S. R. Hototian, H. P. Joaquim, et al.,“Increased iPLA2 activity and levels of phosphorylated GSK3B in platelets are associated with donepezil treatment in Alzheimer’s disease patients,” Eur. Arch. Psychiat. Clin. Neurosci., 265, 701-706 (2015).

    Article  CAS  Google Scholar 

  33. E. L. Schaeffer, O. V. Forlenza, and W. F. Gattaz, “Phospholipase A(2) activation as a therapeutic approach for cognitive enhancement in early-stage Alzheimer disease,” Psychopharmacology, 202, 37-51 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Y. Shirai and M. Ito, “Specific differential expression of phospholipase A2 subtypes in rat cerebellum,” J. Neurocytol., 33, 297-307(2004).

    Article  CAS  PubMed  Google Scholar 

  35. B. Lu and J. H. Chang, “Regulation of neurogenesis by neurotrophins: implications in hippocampus dependent memory,” Neuron Glia Biol., 1, 377-384 (2005).

    Article  Google Scholar 

  36. D. A. Nation, C. E. Wierenga, L. R. Clark, et al., “Cortical and subcortical cerebrovascular resistance index in mild cognitive impairment and Alzheimer’s disease,” J. Alzheimers Dis., 36, 689-698 (2013).

    PubMed  PubMed Central  Google Scholar 

  37. J. H. Birnbaum, J. Bali, L. Rajendran, et al., “Calcium flux-independent NMDA receptor activity is required for Aβ oligomer-induced synaptic loss,” Cell Death Dis., 18, e1791 (2015), doi: https://doi.org/10.1038/cddis.2015.160.

    Article  Google Scholar 

  38. M. P. Mattson and S. L. Chan, “Neuronal and glial calcium signaling in Alzheimer’s disease,” Cell Calcium, 34, 385-397 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. J. Gocel and J. Larson, “Synaptic NMDA receptormediated currents in anterior piriform cortex are reduced in the adult fragile X mouse,” Neuroscience, 221, 170-181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Ghazaryan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazaryan, N.A., Simonyan, K.V., Danielyan, M.H. et al. Neuroprotective Effects of Macrovipera lebetina Snake Venom in the Model of Alzheimer’s Disease. Neurophysiology 49, 412–423 (2017). https://doi.org/10.1007/s11062-018-9704-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-018-9704-8

Keywords

Navigation