Advertisement

Neurophysiology

, Volume 49, Issue 6, pp 412–423 | Cite as

Neuroprotective Effects of Macrovipera lebetina Snake Venom in the Model of Alzheimer’s Disease

  • N. A. Ghazaryan
  • K. V. Simonyan
  • M. H. Danielyan
  • N. A. Zakaryan
  • L. A. Ghulikyan
  • G. R. Kirakosyan
  • V. A. Chavushyan
  • N. M. Ayvazyan
Article
  • 42 Downloads

Pathological features of Alzheimer’s disease (AD) include accumulation and deposition of β-amyloid (Aβ) in the brain, activation of astrocytes and microglia, and disruption of cholinergic neurotransmission. In our experiments on rats, a model of AD was created by intracerebroventricular (i.c.v.) injections of Aβ25–35 amyloid. In another animal group, this was combined with intramuscular (i.m.) injections of small doses of Macrovipera lebetina (ML) snake venom (50 μl of 5% solution of an LD50 dose per animal seven times with one-day-long intervals). In the AD model, the most vulnerable neurons were found in the hippocampal fields CA1 and CA3. The phosphatase activity in the hippocampus of Aβ-injected rats sharply dropped. Systemic administration of small doses of ML venom induced positive changes in the structural characteristics of hippocampal neurons, increased the density of neurons in the above fields, normalized metabolism, and intensified Ca2+-dependent phosphorylation. Under the action of ML venom, the proportion of responses of hippocampal pyramidal neurons after high-frequency tetanic stimulation of the ipsilateral entorhinal cortex in the form of tetanic depression–posttetanic potentiation increased, and an overall increase in the firing rate of hippocampal neurons was observed. The intensity of free radical processes in some tissues of Aβ-affected animals became much lower under the action of ML venom. Thus, small doses of this venom manifest clear neuroprotective effects in the rat AD model.

Keywords

Alzheimer’s disease Аβ-induced neurodegeneration hippocampus Macrovipera lebetina venom Ca2+-dependent acid phosphatase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Asadi, A. H. Jamshidi, F. Khodagholi, et al., “Reversal effects of crocin on amyloid β-induced memory deficit: Modification of autophagy or apoptosis markers,” Pharmacol. Biochem. Behav., 15, 30083-30086 (2015).Google Scholar
  2. 2.
    J. H. Morrison and P. R. Hof, “Life and death of neurons in the aging cerebral cortex,” Int. Rev. Neurobiol., 81, 41-57 (2007).CrossRefPubMedGoogle Scholar
  3. 3.
    J. Shen and J. Wu, “Nicotinic cholinergic mechanisms in Alzheimer’s disease,” Int. Rev. Neurobiol., 124, 275-292 (2015).CrossRefPubMedGoogle Scholar
  4. 4.
    J. M. Craft, D. M. Watterson, and L. J. Van Eldik, “Human amyloid β-induced neuroinflammation is an early event in neurodegeneration,” Glia, 53, 484-490 (2006).CrossRefPubMedGoogle Scholar
  5. 5.
    E. Detrait, T. Maurice, E. Hanon, et al., “Lack of synaptic vesicle protein SV2B protects against amyloid-β25–35-induced oxidative stress, cholinergic deficit and cognitive impairment in mice,” Behav. Brain Res., 271, 277-285 (2014).CrossRefPubMedGoogle Scholar
  6. 6.
    M. Pallas and A. Camins, “Molecular and biochemical features in Alzheimer’s disease,” Current Pharm. Des., 12, 4389-408 (2006).CrossRefGoogle Scholar
  7. 7.
    M. Nagashima, S. Yasuhara, and J. A. Martyn, “Trainof-four and tetanic fade are not always a prejunctional phenomenon as evaluated by toxins having highly specific pre- and postjunctional actions,” Anesth. Analg., 116, 994-1000 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    P. Treppmann, I. Brunk, T. Afube, et al., “Neurotoxic phospholipases directly affect synaptic vesicle function,” J. Neurochem., 117, 757-764 (2011).PubMedGoogle Scholar
  9. 9.
    R. Chen and S. E. Robinson, “The effect of cobrotoxin on cholinergic neurons in the mouse,” Life Sci., 51, 1013-1019 (1992).CrossRefPubMedGoogle Scholar
  10. 10.
    N. A. Ghazaryan, L. A. Ghulikyan, and N. M. Ayvazyan, “Morphological changes of proteolipid giant unilamellar vesicles affected by Macrovipera lebetina obtusa venom visualized with fluorescence microscope,” J. Membrane Biol., 246, 627-632 (2013).CrossRefGoogle Scholar
  11. 11.
    N. Vardjan, M. Mattiazzi, and E. Rowan, “Neurotoxic phospholipase A2 toxicity model: An insight from mammalian cells,” Commun. Integr. Biol., 6, e23600 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    N. A. Ghazaryan, L. Ghulikyan, A. Kishmiryan, et al., “Phospholipases A2 from Viperidae snakes: Differences in membranotropic activity between enzymatically active toxin and its inactive isoforms,” BBA-Biomembranes, 1848, 463-468 (2015).CrossRefPubMedGoogle Scholar
  13. 13.
    L. Sanz, N. Ayvazyan, and J. J. Calvete, “Snake venomics of the Armenian mountain vipers Macrovipera lebetina obtusa and Vipera raddei,” J. Proteomics, 71, 198-209 (2008).CrossRefPubMedGoogle Scholar
  14. 14.
    H. A. Bimonte-Nelson, A. C. Granholm, M. E. Nelson, and A. B. Moore, “Patterns of neurotrophin protein levels in male and female Fischer 344 rats from adulthood to senescence: how young is ‘young’ and how old is ‘old’?” Exp. Aging Res., 34, 13-26 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    T. Kurtovic, M. L. Balija, N. M. Ayvazyan, and B. Halassy, “Paraspecificity of Vipera ammodytesspecific antivenom towards Montivipera raddei and Macrovipera lebetina obtusa venoms,” Toxicon, 78, 103-112 (2014).CrossRefPubMedGoogle Scholar
  16. 16.
    T. Maurice, B. Lockhar, T. Su, and A. Privat, “Reversion of β25–35-amyloid peptide-induced amnesia by NMDA receptor-associated glycine site agonists,” Brain Res., 731, 249-253 (1996).CrossRefPubMedGoogle Scholar
  17. 17.
    T. Maurice and A. Privat, “Sigma1 (sigma 1) receptor agonists and neurosteroids attenuate beta25–35-amyloid peptide-induced amnesia in mice through a common mechanism,” Neuroscience, 83, 413-428 (1998).CrossRefPubMedGoogle Scholar
  18. 18.
    K. Yenkoyan, K. Safaryan, V. Chavushyan, et al., “Neuroprotective action of proline-rich polypeptide-1 in β-amyloid induced neurodegeneration in rats,” Brain Res. Bull., 86, 262-271 (2011).CrossRefPubMedGoogle Scholar
  19. 19.
    A. Chilingaryan, A. M. Chilingaryan, and G. G. Martin, “The three-dimensional detection of microvasculatory bed in the brain of white rat Rattus norvegicus by a Ca2+-ATPase method,” Brain Res., 1070, 131-138 (2006).CrossRefPubMedGoogle Scholar
  20. 20.
    G. Paxinos and Ch. Watson, The Rat Brain in Stereotaxic Coordinates, Acad. Press, New York (2005).Google Scholar
  21. 21.
    L. Slomianka, T. Drenth, N. Cavegn, et al., “The hippocampus of the eastern rock sengi: cytoarchitecture, markers of neuronal function, principal cell numbers, and adult neurogenesis,” Front. Neuroanat., 29, 34 (2013), doi:  https://doi.org/10.3389/fnana.2013.00034.Google Scholar
  22. 22.
    D. M. Mann, “Pyramidal nerve cell loss in Alzheimer’s disease,” Neurodegeneration, 5, 423-427 (1996).CrossRefPubMedGoogle Scholar
  23. 23.
    T. C. Wen, J. Tanaka, H. Peng, et al., “Interleukin 3 prevents delayed neuronal death in the hippocampal CA1 field,” J. Exp. Med., 188, 635-649 (1998).CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    H. M. Schipper, D. E. Scarborough, R. M. Lechan, and S. Reichlin, “Gomori-positive astrocytes in primary culture: effects of in vitro age and cysteamine exposure,” Brain Res. Dev. Brain Res., 54, 71-79 (1990).CrossRefPubMedGoogle Scholar
  25. 25.
    K. Sugaya, M. Chouinard, R. Greene, et al., “Molecular indices of neuronal and glial plasticity in the hippocampal formation in a rodent model of age-induced spatial learning impairment,” J. Neurosci., 16, 3427-3443 (1996).CrossRefPubMedGoogle Scholar
  26. 26.
    G. Bergers and S. Song, “The role of pericytes in bloodvessel formation and maintenance,” Neurol. Oncol., 7, 452-464 (2005).CrossRefGoogle Scholar
  27. 27.
    W. Kamphuis, J. Middeldorp, and L. Kooijman, “Glial fibrillary acidic protein isoform expression in plaque related astrogliosis in Alzheimer’s disease,” Neurobiol. Aging, 35, 492-510 (2014).CrossRefPubMedGoogle Scholar
  28. 28.
    V. V. Banin, “Neoplasm of vessels: cellular and molecular mechanisms of regulation,” Morfologia (S. Petersburg), Materials of VІ Congress of Int. Ass. of Morphologists, Кolos readings, 18 (2002).Google Scholar
  29. 29.
    P. Bianco, M. Riminucci, S. Gronthos, and P. G. Robey, “Bone marrow stromal stem cells: nature, biology, and potential applications,” Stem Cells, 19,180-192 (2001).CrossRefPubMedGoogle Scholar
  30. 30.
    M. Tolnay and F. Clavaguera, “Argyrophilic grain disease: a late-onset dementia with distinctive features among tauopathies,” Neuropathology, 24, 269-283 (2004).CrossRefPubMedGoogle Scholar
  31. 31.
    W. F. Gattaz, L. L. Talib, E. L. Schaeffer, et al., “Low platelet iPLA activity predicts conversion from mild cognitive impairment to Alzheimer’s disease: a 4-year follow-up study,” J. Neural. Transm., 121, 193-200 (2014).CrossRefPubMedGoogle Scholar
  32. 32.
    L. L. Talib, S. R. Hototian, H. P. Joaquim, et al.,“Increased iPLA2 activity and levels of phosphorylated GSK3B in platelets are associated with donepezil treatment in Alzheimer’s disease patients,” Eur. Arch. Psychiat. Clin. Neurosci., 265, 701-706 (2015).CrossRefGoogle Scholar
  33. 33.
    E. L. Schaeffer, O. V. Forlenza, and W. F. Gattaz, “Phospholipase A(2) activation as a therapeutic approach for cognitive enhancement in early-stage Alzheimer disease,” Psychopharmacology, 202, 37-51 (2009).CrossRefPubMedGoogle Scholar
  34. 34.
    Y. Shirai and M. Ito, “Specific differential expression of phospholipase A2 subtypes in rat cerebellum,” J. Neurocytol., 33, 297-307(2004).CrossRefPubMedGoogle Scholar
  35. 35.
    B. Lu and J. H. Chang, “Regulation of neurogenesis by neurotrophins: implications in hippocampus dependent memory,” Neuron Glia Biol., 1, 377-384 (2005).CrossRefGoogle Scholar
  36. 36.
    D. A. Nation, C. E. Wierenga, L. R. Clark, et al., “Cortical and subcortical cerebrovascular resistance index in mild cognitive impairment and Alzheimer’s disease,” J. Alzheimers Dis., 36, 689-698 (2013).PubMedPubMedCentralGoogle Scholar
  37. 37.
    J. H. Birnbaum, J. Bali, L. Rajendran, et al., “Calcium flux-independent NMDA receptor activity is required for Aβ oligomer-induced synaptic loss,” Cell Death Dis., 18, e1791 (2015), doi:  https://doi.org/10.1038/cddis.2015.160.CrossRefGoogle Scholar
  38. 38.
    M. P. Mattson and S. L. Chan, “Neuronal and glial calcium signaling in Alzheimer’s disease,” Cell Calcium, 34, 385-397 (2003).CrossRefPubMedGoogle Scholar
  39. 39.
    J. Gocel and J. Larson, “Synaptic NMDA receptormediated currents in anterior piriform cortex are reduced in the adult fragile X mouse,” Neuroscience, 221, 170-181 (2012).CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. A. Ghazaryan
    • 1
  • K. V. Simonyan
    • 1
  • M. H. Danielyan
    • 1
  • N. A. Zakaryan
    • 1
  • L. A. Ghulikyan
    • 1
  • G. R. Kirakosyan
    • 1
  • V. A. Chavushyan
    • 1
  • N. M. Ayvazyan
    • 1
  1. 1.Laboratory of Toxicology and Molecular SystematicsOrbeli Institute of Physiology of the NAS of RAYerevanArmenia

Personalised recommendations