, Volume 49, Issue 6, pp 396–404 | Cite as

Cerebral Structures Responsible for the Formation of Autonomic Reflexes Related to Realization of Motivated Operant Movements by Rats

  • O. P. Mankivska
  • O. V. Vlasenko
  • O. E. Mayevskii
  • I. V. Vereshchaka
  • T. V. Buzyka
  • V. O. Maisky
  • A. V. Maznychenko

We studied changes in the levels of Fos immunoreactivity and NADPH diaphorase reactivity in the autonomic nuclei and catecholaminergic (CA) groups of brainstem cells in rats that realized food-procuring movements by the forelimb. Fos-immunoreactivity in the medullary nuclei of the autonomic nervous system, ANS (Sol, IRt, CVL/RVL), of these animals was appreciably higher than that in control rats. Under such conditions, a considerable part of motoneurons in the brainstem autonomic motor nuclei (10, Amb, and RAmb) were activated. In the motor nuclei of the vagus nerve, large Fos-immunoreactive (Fos-ir) neurons were observed. In rats, therefore, intense autonomic reactions closely related to realization of a motor program develop during sessions of operant food-procuring movements. The expression of protein c-Fos in brainstem CA neurons during the performance of operant movements was intensified, mostly on the contralateral side. In the brainstem CA groups А5 and А6 (LC/SC), we observed a maximum number of Fos-ir neurons, as compared with the control values. These cell groups are formed mostly of noradrenergic neurons that are the main sources of descending inhibitory inputs to the spinal thorasic and lumbar intermediolateral sympathetic nuclei. Therefore, the ANS can directly influence the functioning of muscle spindles and proprioceptors and can, as a result, influence the realization of motor program.


c-Fos autonomic nervous system catecholaminergic neurons NADPH diaphorase operant movements parasympathetic brainstem nuclei 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Ruffini, “On the minute anatomy of the neuromuscular spindles of the cat, and their physiological significance,” J. Physiol., 23, 190-208 (1898).CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    S. Roatta, U. Windhorst, M. Ljubisavjevic, et al., “Sympathetic modulation of the muscle spindle afferent sensitivity to stretch in rabbit jaw closing muscles,” J. Physiol., 540, 237-248 (2002).CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    F. Hellström, S. Roatta, J. Thunberg, et al., “Responses of muscle spindles in feline dorsal neck muscles to electrical stimulation of the cervical sympathetic nerve,” Exp. Brain Res., 165, 328-342 (2005).CrossRefPubMedGoogle Scholar
  4. 4.
    D. Radovanovic, K. Peikert, M. Lindström, et al., “Sympathetic innervation of human muscle spindles,” J. Anat., 226, 542-548 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    D. R. Seals and R. G. Victor, “Regulation of muscle sympathetic nerve activity during exercise in humans,” Exerc. Sport Sci. Rev., 19, 313-349 (1991).CrossRefPubMedGoogle Scholar
  6. 6.
    R. Matsuo, A. Ikehaza, T. Nokubi, et al., “Inhibitory effect of sympathetic stimulation on activities of masseter muscle spindles and the jaw jerk reflex in rat,” J. Physiol., 483, 239-250 (1995).CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    A. Zagon and A. D. Sanith, “Monosynaptic projections from the rostral ventrolateral medulla oblongata to identified sympathetic preganglionic neurons,” Neuroscience, 265, 149-155 (1993).Google Scholar
  8. 8.
    A. D. Loewy, S. McKellar, and C. B. Saper, “Direct projections from the A5 catecholamine cell group to the intermediolateral cell column,” Brain Res., 174, 309-314 (1979).CrossRefPubMedGoogle Scholar
  9. 9.
    H. G. J. M. Kuypers and V. A. Maisky, “Retrograde axonal transport of horseradish peroxidase from spinal cord to brain stem groups in the cat,” Neurosci. Lett., 1, 9-14 (1975).CrossRefPubMedGoogle Scholar
  10. 10.
    N. Z. Doroshenko and V. A. Maiskii, “Bulbar and pontine sources of catecholamine innervation of the rat spinal cord investigated by monoamine fluorescence and retrograde labeling techniques,” Neurophysiology, 18, No. 4, 367-374 (1986).CrossRefGoogle Scholar
  11. 11.
    T. L. Krukoff, “Central action of nitric oxide in regulation of autonomic function,” Brain Res.–Brain Res. Rev., 30, 52-65 (1999).CrossRefPubMedGoogle Scholar
  12. 12.
    M. Sheng and M. E. Greenberg, “The regulation and function of c-fos and other immediate early genes in the nervous system,” Neuron, 4, 477-485 (1990).CrossRefPubMedGoogle Scholar
  13. 13.
    A. V. Dovgan’, O. V. Vlasenko, A. V. Maznychenko, et al., “Operant reflexes and expression of the c-fos gene in the amygdalar nuclei and insular cortex of rats,” Neurophysiology, 43, No. 3, 244-247 (2011).CrossRefGoogle Scholar
  14. 14.
    O. V. Vlasenko, T. V. Buzyka, V. A. Maiskii, et al., “Activation of neurons of the medullary centers of the autonomic nervous system related to motivated operant movements realized by rats,” Neurophysiology, 42, No. 5, 325-337 (2010).CrossRefGoogle Scholar
  15. 15.
    O. V. Dovgan’, O. V. Vlasenko, I. L. Rokunets, et al., “Food-procuring stereotype movements is accompanied by changes of c-fos gene expression in the amygdala and modulation of heart rate in rats,” Int. J. Physiol. Pathophysiol., 4, No. 2, 1-15 (2013).Google Scholar
  16. 16.
    O. V. Vlasenko, Ye. P. Man’kovskaya, A. V. Maznichenko, et al., “Fos immunoreactivity in the motor cortex of rats realizing operant movements: changes after systemic introduction of a NOS blocker,” Neurophysiology, 45, No. 1, 79-83 (2013).CrossRefGoogle Scholar
  17. 17.
    S.-M. Hsu, L. Raine, and H. Fanger, “Use of avidinbiotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabelled antibody (PAP) procedures,” J. Histochem. Cytochem., 29, 577-580 (1981).CrossRefPubMedGoogle Scholar
  18. 18.
    G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, New York (1998).Google Scholar
  19. 19.
    S. R. Vincent and H. Kimura, “Histochemical mapping of nitric oxide synthase in the rat brain,” Neuroscience, 46, 755-784 (1992).CrossRefPubMedGoogle Scholar
  20. 20.
    M. Kalia, K. Fuxe, and M. Goldstein, “Rat medulla oblongata. II. Noradrenergic neurons, nerve fibres and preterminal processes,” J. Comp. Neurol., 233, 308-332 (1985).CrossRefPubMedGoogle Scholar
  21. 21.
    M. Kalia, K. Fuxe, and M. Goldstein, “Rat medulla oblongata. III. Adrenergic (C1 and C2) neurons, nerve fibres and presumptive terminal processes,” J. Comp. Neurol., 233, 333-349 (1985).CrossRefPubMedGoogle Scholar
  22. 22.
    O. V. Vlasenko, A. I. Pilyavskii, V. A. Maiskii, and A. V. Maznichenko, “Fos-immunoreactrivity and NADPH-d reactivity in the brain cortex of rats realizing motivated stereotyped movements by the forelimb,” Neurophysiology, 40, No. 4, 295-303 (2008).CrossRefGoogle Scholar
  23. 23.
    D. L. Adkins, J. Boychuk, M. S. Remple, et al., “Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord,” J. Appl. Physiol., 101, 1776-1782 (2006).CrossRefPubMedGoogle Scholar
  24. 24.
    Ye. P. Man’kovskaya, V. A. Maisky, O. V. Vlasenko, et al., “7-Nitroindazole enhances c-Fos expression in spinal neurons in rats realizing operant movements,” Acta Histochem., 116, 1427-1433 (2014).CrossRefPubMedGoogle Scholar
  25. 25.
    A. V. Dovgan’, O. V. Vlasenko, V. A. Maiskii, et al. “Topography of Fos-immunoreactivity and NADPH-dreactive neurons in the limbic structures of the basal forebrain and in the hypothalamus during realization of motivated operant movements in rats,” Neurophysiology, 41, No. 1, 28-36 (2009).CrossRefGoogle Scholar
  26. 26.
    M. T. Koh, E. E. Wilkins, and I. L. Bernstein, “Novel tastes elevate c-fos expression in the central amygdala and insular cortex: implication for taste aversion learning,” Behav. Neurosci., 117, 1416-1422 (2003).CrossRefPubMedGoogle Scholar
  27. 27.
    A. J. Nelson, J. M. Juraska, T. I. Musch, and G. A. Iwamoto, “Neuroplastic adaptations to exercise: neuronal remodeling in cardiorespiratory and locomotor areas,” J. Appl. Physiol., 99, 2312-2322 (2005).CrossRefPubMedGoogle Scholar
  28. 28.
    P. J. Mueller, “Exercise training attenuates increases in lumbar sympathetic nerve activity produced by stimulation of the rostral ventrolateral medulla,” J. Appl. Physiol., 102, 803-813 (2007).CrossRefPubMedGoogle Scholar
  29. 29.
    V. A. Maisky and N. Z. Doroshenko, “Catecholamine projections to the spinal cord in the rat and their relationship to central cardiovascular neurons,” J. Auton. Nerv. Syst., 34, 119-128 (1991).CrossRefPubMedGoogle Scholar
  30. 30.
    R. Y. Moore and F. E. Bloom, “Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems,” Annu. Rev. Neurosci., 2, 113-168 (1979).CrossRefPubMedGoogle Scholar
  31. 31.
    P. F. McCulloch and W. M. Panneton, “Activation of brainstem catecholaminergic neurons during voluntary diving in rats,” Brain Res., 984, 42-53 (2003).CrossRefPubMedGoogle Scholar
  32. 32.
    M. Passatore and S. Roatta, “Influence of sympathetic nervous system on sensomotor function: whiplash associated disorders (WAD) as a model,” Eur. J. Appl. Physiol., 98, 423-449 (2006).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • O. P. Mankivska
    • 1
  • O. V. Vlasenko
    • 2
  • O. E. Mayevskii
    • 2
  • I. V. Vereshchaka
    • 3
  • T. V. Buzyka
    • 4
  • V. O. Maisky
    • 1
  • A. V. Maznychenko
    • 1
  1. 1.Bogomolets Institute of PhysiologyNational Academy of Sciences of UkraineKyivUkraine
  2. 2.Pyrogov Vinnitsa National Medical University, Ministry of Public Health of UkraineVinnitsaUkraine
  3. 3.Jędrzej Śniadecki Academy of Physical Education and Sports (Akademia Wychowania Fizycznego i Sportu im. Jędrzeja Śniadeckiego w Gdańsku)GdanskPoland
  4. 4.Mechnikov Odessa National UniversityOdessaUkraine

Personalised recommendations