Skip to main content
Log in

Cerebral Structures Responsible for the Formation of Autonomic Reflexes Related to Realization of Motivated Operant Movements by Rats

  • Published:
Neurophysiology Aims and scope

We studied changes in the levels of Fos immunoreactivity and NADPH diaphorase reactivity in the autonomic nuclei and catecholaminergic (CA) groups of brainstem cells in rats that realized food-procuring movements by the forelimb. Fos-immunoreactivity in the medullary nuclei of the autonomic nervous system, ANS (Sol, IRt, CVL/RVL), of these animals was appreciably higher than that in control rats. Under such conditions, a considerable part of motoneurons in the brainstem autonomic motor nuclei (10, Amb, and RAmb) were activated. In the motor nuclei of the vagus nerve, large Fos-immunoreactive (Fos-ir) neurons were observed. In rats, therefore, intense autonomic reactions closely related to realization of a motor program develop during sessions of operant food-procuring movements. The expression of protein c-Fos in brainstem CA neurons during the performance of operant movements was intensified, mostly on the contralateral side. In the brainstem CA groups А5 and А6 (LC/SC), we observed a maximum number of Fos-ir neurons, as compared with the control values. These cell groups are formed mostly of noradrenergic neurons that are the main sources of descending inhibitory inputs to the spinal thorasic and lumbar intermediolateral sympathetic nuclei. Therefore, the ANS can directly influence the functioning of muscle spindles and proprioceptors and can, as a result, influence the realization of motor program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Ruffini, “On the minute anatomy of the neuromuscular spindles of the cat, and their physiological significance,” J. Physiol., 23, 190-208 (1898).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. S. Roatta, U. Windhorst, M. Ljubisavjevic, et al., “Sympathetic modulation of the muscle spindle afferent sensitivity to stretch in rabbit jaw closing muscles,” J. Physiol., 540, 237-248 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. F. Hellström, S. Roatta, J. Thunberg, et al., “Responses of muscle spindles in feline dorsal neck muscles to electrical stimulation of the cervical sympathetic nerve,” Exp. Brain Res., 165, 328-342 (2005).

    Article  PubMed  Google Scholar 

  4. D. Radovanovic, K. Peikert, M. Lindström, et al., “Sympathetic innervation of human muscle spindles,” J. Anat., 226, 542-548 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. D. R. Seals and R. G. Victor, “Regulation of muscle sympathetic nerve activity during exercise in humans,” Exerc. Sport Sci. Rev., 19, 313-349 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. R. Matsuo, A. Ikehaza, T. Nokubi, et al., “Inhibitory effect of sympathetic stimulation on activities of masseter muscle spindles and the jaw jerk reflex in rat,” J. Physiol., 483, 239-250 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. A. Zagon and A. D. Sanith, “Monosynaptic projections from the rostral ventrolateral medulla oblongata to identified sympathetic preganglionic neurons,” Neuroscience, 265, 149-155 (1993).

    Google Scholar 

  8. A. D. Loewy, S. McKellar, and C. B. Saper, “Direct projections from the A5 catecholamine cell group to the intermediolateral cell column,” Brain Res., 174, 309-314 (1979).

    Article  CAS  PubMed  Google Scholar 

  9. H. G. J. M. Kuypers and V. A. Maisky, “Retrograde axonal transport of horseradish peroxidase from spinal cord to brain stem groups in the cat,” Neurosci. Lett., 1, 9-14 (1975).

    Article  CAS  PubMed  Google Scholar 

  10. N. Z. Doroshenko and V. A. Maiskii, “Bulbar and pontine sources of catecholamine innervation of the rat spinal cord investigated by monoamine fluorescence and retrograde labeling techniques,” Neurophysiology, 18, No. 4, 367-374 (1986).

    Article  Google Scholar 

  11. T. L. Krukoff, “Central action of nitric oxide in regulation of autonomic function,” Brain Res.–Brain Res. Rev., 30, 52-65 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. M. Sheng and M. E. Greenberg, “The regulation and function of c-fos and other immediate early genes in the nervous system,” Neuron, 4, 477-485 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. A. V. Dovgan’, O. V. Vlasenko, A. V. Maznychenko, et al., “Operant reflexes and expression of the c-fos gene in the amygdalar nuclei and insular cortex of rats,” Neurophysiology, 43, No. 3, 244-247 (2011).

    Article  Google Scholar 

  14. O. V. Vlasenko, T. V. Buzyka, V. A. Maiskii, et al., “Activation of neurons of the medullary centers of the autonomic nervous system related to motivated operant movements realized by rats,” Neurophysiology, 42, No. 5, 325-337 (2010).

    Article  Google Scholar 

  15. O. V. Dovgan’, O. V. Vlasenko, I. L. Rokunets, et al., “Food-procuring stereotype movements is accompanied by changes of c-fos gene expression in the amygdala and modulation of heart rate in rats,” Int. J. Physiol. Pathophysiol., 4, No. 2, 1-15 (2013).

    Google Scholar 

  16. O. V. Vlasenko, Ye. P. Man’kovskaya, A. V. Maznichenko, et al., “Fos immunoreactivity in the motor cortex of rats realizing operant movements: changes after systemic introduction of a NOS blocker,” Neurophysiology, 45, No. 1, 79-83 (2013).

    Article  CAS  Google Scholar 

  17. S.-M. Hsu, L. Raine, and H. Fanger, “Use of avidinbiotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabelled antibody (PAP) procedures,” J. Histochem. Cytochem., 29, 577-580 (1981).

    Article  CAS  PubMed  Google Scholar 

  18. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, New York (1998).

    Google Scholar 

  19. S. R. Vincent and H. Kimura, “Histochemical mapping of nitric oxide synthase in the rat brain,” Neuroscience, 46, 755-784 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. M. Kalia, K. Fuxe, and M. Goldstein, “Rat medulla oblongata. II. Noradrenergic neurons, nerve fibres and preterminal processes,” J. Comp. Neurol., 233, 308-332 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. M. Kalia, K. Fuxe, and M. Goldstein, “Rat medulla oblongata. III. Adrenergic (C1 and C2) neurons, nerve fibres and presumptive terminal processes,” J. Comp. Neurol., 233, 333-349 (1985).

    Article  CAS  PubMed  Google Scholar 

  22. O. V. Vlasenko, A. I. Pilyavskii, V. A. Maiskii, and A. V. Maznichenko, “Fos-immunoreactrivity and NADPH-d reactivity in the brain cortex of rats realizing motivated stereotyped movements by the forelimb,” Neurophysiology, 40, No. 4, 295-303 (2008).

    Article  CAS  Google Scholar 

  23. D. L. Adkins, J. Boychuk, M. S. Remple, et al., “Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord,” J. Appl. Physiol., 101, 1776-1782 (2006).

    Article  PubMed  Google Scholar 

  24. Ye. P. Man’kovskaya, V. A. Maisky, O. V. Vlasenko, et al., “7-Nitroindazole enhances c-Fos expression in spinal neurons in rats realizing operant movements,” Acta Histochem., 116, 1427-1433 (2014).

    Article  PubMed  Google Scholar 

  25. A. V. Dovgan’, O. V. Vlasenko, V. A. Maiskii, et al. “Topography of Fos-immunoreactivity and NADPH-dreactive neurons in the limbic structures of the basal forebrain and in the hypothalamus during realization of motivated operant movements in rats,” Neurophysiology, 41, No. 1, 28-36 (2009).

    Article  Google Scholar 

  26. M. T. Koh, E. E. Wilkins, and I. L. Bernstein, “Novel tastes elevate c-fos expression in the central amygdala and insular cortex: implication for taste aversion learning,” Behav. Neurosci., 117, 1416-1422 (2003).

    Article  PubMed  Google Scholar 

  27. A. J. Nelson, J. M. Juraska, T. I. Musch, and G. A. Iwamoto, “Neuroplastic adaptations to exercise: neuronal remodeling in cardiorespiratory and locomotor areas,” J. Appl. Physiol., 99, 2312-2322 (2005).

    Article  PubMed  Google Scholar 

  28. P. J. Mueller, “Exercise training attenuates increases in lumbar sympathetic nerve activity produced by stimulation of the rostral ventrolateral medulla,” J. Appl. Physiol., 102, 803-813 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. V. A. Maisky and N. Z. Doroshenko, “Catecholamine projections to the spinal cord in the rat and their relationship to central cardiovascular neurons,” J. Auton. Nerv. Syst., 34, 119-128 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. R. Y. Moore and F. E. Bloom, “Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems,” Annu. Rev. Neurosci., 2, 113-168 (1979).

    Article  CAS  PubMed  Google Scholar 

  31. P. F. McCulloch and W. M. Panneton, “Activation of brainstem catecholaminergic neurons during voluntary diving in rats,” Brain Res., 984, 42-53 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. M. Passatore and S. Roatta, “Influence of sympathetic nervous system on sensomotor function: whiplash associated disorders (WAD) as a model,” Eur. J. Appl. Physiol., 98, 423-449 (2006).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Mankivska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mankivska, O.P., Vlasenko, O.V., Mayevskii, O.E. et al. Cerebral Structures Responsible for the Formation of Autonomic Reflexes Related to Realization of Motivated Operant Movements by Rats. Neurophysiology 49, 396–404 (2017). https://doi.org/10.1007/s11062-018-9702-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-018-9702-x

Keywords

Navigation