, Volume 49, Issue 5, pp 384–392 | Cite as

Intracellular Calcium Fluxes in Excitable Cells

  • V. M. Shkryl

The estimation of not only concentrations of different intracellular ions (calcium in particular), but also of the dynamics of changes in these parameters, is one of the most important tasks in today cell biology. The measurements of calcium concentrations in the cell and even in its separate organelles are possible with the use of several experimental approaches (electron microscopy, electrophysiological techniques, fluorescent/optic methods, and others). Calcium is present in the cell in free (ionized) and bound states. Local rapid changes in the Ca2+ level in definite cell sites are individual quanta of an integral oscillatory calcium signal determining numerous cell functions. Separation of calcium fluxes in different cell compartments and evaluation of the role of calcium receptors and channels in the plasma membrane and membranes of the intracellular organelles allows experimenters to begin estimation of contributions of the respective events to the regulation of physiological functions of the cell, e.g., of synaptic plasticity of the neuron. This review describes some methodic approaches for the measurements of concentrations of calcium and characteristics of its fluxes; this makes it possible to characterize separate components of calcium signaling and to determine the roles of these components in the regulation of different functions of excitable cells.


Ca2+ calcium fluxes fluorescent indicators microscopy neuron 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. J. Berridge, “Neuronal calcium signaling,” Neuron, 21, 13-26 (1998).CrossRefPubMedGoogle Scholar
  2. 2.
    T. Pozzan, R. Rizzuto, P. Volpe, and J. Meldolesi, “Molecular and cellular physiology of intracellular calcium stores,” Physiol. Rev., 74, 595-636 (1994).CrossRefPubMedGoogle Scholar
  3. 3.
    M. J. Berridge, P. Lipp, and M. D. Bootman, “The versatility and universality of calcium signalling,” Nat. Rev. Mol. Cell Biol., 1, 11-21 (2000).CrossRefPubMedGoogle Scholar
  4. 4.
    D. Futagi, and K. Kitano, “Ryanodine-receptor-driven intracellular calcium dynamics underlying spatial association of synaptic plasticity,” J. Comput. Neurosci., 39, 329-347 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    A. V. Somlyo, H. Shuman, and A. P. Somlyo, “Composition of sarcoplasmic reticulum in situ by electron probe X-ray microanalysis,” Nature, 268, 556-558 (1977).CrossRefPubMedGoogle Scholar
  6. 6.
    T. A. Hall, and B. L. Gupta, “The localization and assay of chemical elements by microprobe methods,” Q. Rev. Biophys., 16, 279-339 (1983).CrossRefPubMedGoogle Scholar
  7. 7.
    S. B. Andrews, R. A. Buchanan, and R. D. Leapman, “Quantitative dark-field mass analysis of ultrathin cryosections in the field-emission scanning transmission electron microscope,” Scanning Microsc. Suppl., 8, 13-23; discussion 23-14 (1994).PubMedGoogle Scholar
  8. 8.
    R. A. Buchanan, R. D. Leapman, M. F. O’Connell, et al., “Quantitative scanning transmission electron microscopy of ultrathin cryosections: subcellular organelles in rapidly frozen liver and cerebellar cortex,” J. Struct. Biol., 110, 244-255 (1993).CrossRefPubMedGoogle Scholar
  9. 9.
    R. D. Leapman, and S. B. Andrews, “Analysis of directly frozen macromolecules and tissues in the field-emission STEM,” J. Microsc., 161, 3-19 (1991).CrossRefPubMedGoogle Scholar
  10. 10.
    L. D. Pozzo-Miller, N. B. Pivovarova, J. A. Connor, et al., “Correlated measurements of free and total intracellular calcium concentration in central nervous system neurons,” Microsc. Res. Tech., 46, 370-379 (1999).CrossRefPubMedGoogle Scholar
  11. 11.
    E. Neher, “The use of fura-2 for estimating Ca buffers and Ca fluxes,” Neuropharmacology, 34, 1423-1442 (1995).CrossRefPubMedGoogle Scholar
  12. 12.
    R. D. Leapman, S. Q. Sun, J. A. Hunt, and S. B. Andrews, “Biological electron energy loss spectroscopy in the field-emission scanning transmission electron microscope,” Scanning Microsc. Suppl., 8, 245-258; discussion 258-249 (1994).PubMedGoogle Scholar
  13. 13.
    H. Shuman, and A. P. Somlyo, “Electron energy loss analysis of near-trace-element concentrations of calcium,” Ultramicroscopy, 21, 23-32 (1987).CrossRefPubMedGoogle Scholar
  14. 14.
    A. B. Borle, “An overview of techniques for the measurement of calcium distribution, calcium fluxes, and cytosolic free calcium in mammalian cells,” Environ. Health Perspect., 84, 45-56 (1990).CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    T. Uchikawa, and A. B. Borle, “Studies of calcium-45 desaturation from kidney slices in flow-through chambers,” Am. J. Physiol., 234, R34-38 (1978).PubMedGoogle Scholar
  16. 16.
    A. Takahashi, P. Camacho, J. D. Lechleiter, and B. Herman, “Measurement of intracellular calcium,” Physiol. Rev., 79, 1089-1125 (1999).CrossRefPubMedGoogle Scholar
  17. 17.
    S. Baudet, L. Hove-Madsen, and D. M. Bers, “How to make and use calcium-specific mini- and microelectrodes,” Methods Cell Biol., 40, 93-113 (1994).CrossRefPubMedGoogle Scholar
  18. 18.
    S. Q. Wang, L. S. Song, E. G. Lakatta, and H. Cheng, “Ca2+ signalling between single L-type Ca2+ channels and ryanodine receptors in heart cells,” Nature, 410, 592-596 (2001).CrossRefPubMedGoogle Scholar
  19. 19.
    B. L. Sabatini, and W. G. Regehr, “Optical measurement of presynaptic calcium currents,” Biophys. J., 74, 1549-1563 (1998).CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    S. M. Baylor, W. K. Chandler, and M. W. Marshall, “Calcium release and sarcoplasmic reticulum membrane potential in frog skeletal muscle fibres,” J. Physiol., 348, 209-238 (1984).CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    G. Brum, E. Rios, and E. Stefani, “Effects of extracellular calcium on calcium movements of excitation-contraction coupling in frog skeletal muscle fibres,” J. Physiol., 398, 441-473 (1988).CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    O. Delbono, and G. Meissner, “Sarcoplasmic reticulum Ca2+ release in rat slow- and fast-twitch muscles,” J. Membr. Biol., 151, 123-130 (1996).CrossRefPubMedGoogle Scholar
  23. 23.
    J. Garcia, and M. F. Schneider, “Calcium transients and calcium release in rat fast-twitch skeletal muscle fibres,” J. Physiol., 463, 709-728 (1993).CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    W. Melzer, E. Rios, and M.F. Schneider, “A general procedure for determining the rate of calcium release from the sarcoplasmic reticulum in skeletal muscle fibers,” Biophys. J., 51, 849-863 (1987).CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    N. Shirokova, J. Garcia, G. Pizarro, and E. Rios, “Ca2+ release from the sarcoplasmic reticulum compared in amphibian and mammalian skeletal muscle,” J. Gen. Physiol., 107, 1-18 (1996).CrossRefPubMedGoogle Scholar
  26. 26.
    S. M. Baylor, W. K. Chandler, and M. W. Marshall, “Sarcoplasmic reticulum calcium release in frog skeletal muscle fibres estimated from Arsenazo III calcium transients,” J. Physiol., 344, 625-666 (1983).CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    W. Melzer, E. Rios, and M. F. Schneider, “Time course of calcium release and removal in skeletal muscle fibers,” Biophys. J., 45, 637-641 (1984).CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    E. Rios, M. D. Stern, A. Gonzalez, et al., “Calcium release flux underlying Ca2+ sparks of frog skeletal muscle,” J. Gen. Physiol., 114, 31-48 (1999).CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    L. Figueroa, V. M. Shkryl, J. Zhou, et al., “Synthetic localized calcium transients directly probe signalling mechanisms in skeletal muscle,” J. Physiol., 590, 1389-1411 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    H. Cheng, W. J. Lederer, and M. B. Cannell, “Calcium sparks: elementary events underlying excitationcontraction coupling in heart muscle,” Science, 262, 740-744 (1993).CrossRefPubMedGoogle Scholar
  31. 31.
    A. Tsugorka, E. Rios, and L.A. Blatter, “Imaging elementary events of calcium release in skeletal muscle cells,” Science, 269, 1723-1726 (1995).CrossRefPubMedGoogle Scholar
  32. 32.
    I. Parker, and I. Ivorra, “Localized all-or-none calcium liberation by inositol trisphosphate,” Science, 250, 977-979 (1990).CrossRefPubMedGoogle Scholar
  33. 33.
    D. J. Santiago, J. W. Curran, D. M. Bers, et al., “Ca sparks do not explain all ryanodine receptor-mediated SR Ca leak in mouse ventricular myocytes,” Biophys. J., 98, 2111-2120 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    V. M. Shkryl, L. A. Blatter, and E. Rios, “Properties of Ca2+ sparks revealed by four-dimensional confocal imaging of cardiac muscle,” J. Gen. Physiol., 139, 189-207 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    C. H. Kong, D. R. Laver, and M. B. Cannell, “Extraction of sub-microscopic Ca fluxes from blurred and noisy fluorescent indicator images with a detailed model fitting approach,” PLoS Comput. Biol., 9, e1002931 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    C. Kettlun, A. Gonzalez, E. Rios, and M. Fill, “Unitary Ca2+ current through mammalian cardiac and amphibian skeletal muscle ryanodine receptor channels under nearphysiological ionic conditions,” J. Gen. Physiol., 122, 407-417 (2003).CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    M. E. Larkum, S. Watanabe, T. Nakamura, et al., “Synaptically activated Ca2+ waves in layer 2/3 and layer 5 rat neocortical pyramidal neurons,” J. Physiol., 549, 471-488 (2003).CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    L. D. Pozzo Miller, J. J. Petrozzino, G. Golarai, and J. A. Connor, “Ca2+ release from intracellular stores induced by afferent stimulation of CA3 pyramidal neurons in hippocampal slices,” J. Neurophysiol., 76, 554-562 (1996).CrossRefPubMedGoogle Scholar
  39. 39.
    A. Verkhratsky, “Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons,” Physiol. Rev., 85, 201-279 (2005).CrossRefPubMedGoogle Scholar
  40. 40.
    I. Llano, J. Gonzalez, C. Caputo, et al., “Presynaptic calcium stores underlie large-amplitude miniature IPSCs and spontaneous calcium transients,” Nat. Neurosci., 3, 1256-1265 (2000).CrossRefPubMedGoogle Scholar
  41. 41.
    C. Lohmann, A. Finski, and T. Bonhoeffer, “Local calcium transients regulate the spontaneous motility of dendritic filopodia,” Nat. Neurosci., 8, 305-312 (2005).CrossRefPubMedGoogle Scholar
  42. 42.
    S. Manita, and W. N. Ross, “Synaptic activation and membrane potential changes modulate the frequency of spontaneous elementary Ca2+ release events in the dendrites of pyramidal neurons,” J. Neurosci., 29, 7833-7845 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    R. Rizzuto, and T. Pozzan, “Microdomains of intracellular Ca2+: molecular determinants and functional consequences,” Physiol. Rev., 86, 369-408 (2006).CrossRefPubMedGoogle Scholar
  44. 44.
    C. M. Niswender, and P. J. Conn, “Metabotropic glutamate receptors: physiology, pharmacology, and disease,” Annu. Rev. Pharmacol. Toxicol., 50, 295-322 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    M. Kano, O. Garaschuk, A. Verkhratsky, and A. Konnerth, “Ryanodine receptor-mediated intracellular calcium release in rat cerebellar Purkinje neurones,” J. Physiol., 487, 1-16 (1995).CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    R. W. Tsien, and R. Y. Tsien, “Calcium channels, stores, and oscillations,” Annu. Rev. Cell Biol., 6, 715-760 (1990).CrossRefPubMedGoogle Scholar
  47. 47.
    M. J. Berridge, “Inositol trisphosphate and calcium signalling,” Nature, 361, 315-325 (1993).CrossRefPubMedGoogle Scholar
  48. 48.
    T. Nakamura, J. G. Barbara, K. Nakamura, and W. N. Ross, “Synergistic release of Ca2+ from IP3-sensitive stores evoked by synaptic activation of mGluRs paired with backpropagating action potentials,” Neuron, 24, 727-737 (1999).CrossRefPubMedGoogle Scholar
  49. 49.
    E. Neher, and T. Sakaba, “Multiple roles of calcium ions in the regulation of neurotransmitter release,” Neuron, 59, 861-872 (2008).CrossRefPubMedGoogle Scholar
  50. 50.
    C. Grienberger, and A. Konnerth, “Imaging calcium in neurons,” Neuron, 73, 862-885 (2012).CrossRefPubMedGoogle Scholar
  51. 51.
    R. S. Zucker, “Calcium- and activity-dependent synaptic plasticity,” Curr. Opin. Neurobiol., 9, 305-313 (1999).CrossRefPubMedGoogle Scholar
  52. 52.
    S. Koizumi, M. D. Bootman, L. K. Bobanovic et al., “Characterization of elementary Ca2+ release signals in NGF-differentiated PC12 cells and hippocampal neurons,” Neuron, 22, 125-137 (1999).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Bogomolets Institute of Physiology of the NAS of UkraineKyivUkraine

Personalised recommendations