Skip to main content
Log in

Intracellular Calcium Fluxes in Excitable Cells

  • REVIEWS
  • Published:
Neurophysiology Aims and scope

The estimation of not only concentrations of different intracellular ions (calcium in particular), but also of the dynamics of changes in these parameters, is one of the most important tasks in today cell biology. The measurements of calcium concentrations in the cell and even in its separate organelles are possible with the use of several experimental approaches (electron microscopy, electrophysiological techniques, fluorescent/optic methods, and others). Calcium is present in the cell in free (ionized) and bound states. Local rapid changes in the Ca2+ level in definite cell sites are individual quanta of an integral oscillatory calcium signal determining numerous cell functions. Separation of calcium fluxes in different cell compartments and evaluation of the role of calcium receptors and channels in the plasma membrane and membranes of the intracellular organelles allows experimenters to begin estimation of contributions of the respective events to the regulation of physiological functions of the cell, e.g., of synaptic plasticity of the neuron. This review describes some methodic approaches for the measurements of concentrations of calcium and characteristics of its fluxes; this makes it possible to characterize separate components of calcium signaling and to determine the roles of these components in the regulation of different functions of excitable cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Berridge, “Neuronal calcium signaling,” Neuron, 21, 13-26 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. T. Pozzan, R. Rizzuto, P. Volpe, and J. Meldolesi, “Molecular and cellular physiology of intracellular calcium stores,” Physiol. Rev., 74, 595-636 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. M. J. Berridge, P. Lipp, and M. D. Bootman, “The versatility and universality of calcium signalling,” Nat. Rev. Mol. Cell Biol., 1, 11-21 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. D. Futagi, and K. Kitano, “Ryanodine-receptor-driven intracellular calcium dynamics underlying spatial association of synaptic plasticity,” J. Comput. Neurosci., 39, 329-347 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. A. V. Somlyo, H. Shuman, and A. P. Somlyo, “Composition of sarcoplasmic reticulum in situ by electron probe X-ray microanalysis,” Nature, 268, 556-558 (1977).

    Article  CAS  PubMed  Google Scholar 

  6. T. A. Hall, and B. L. Gupta, “The localization and assay of chemical elements by microprobe methods,” Q. Rev. Biophys., 16, 279-339 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. S. B. Andrews, R. A. Buchanan, and R. D. Leapman, “Quantitative dark-field mass analysis of ultrathin cryosections in the field-emission scanning transmission electron microscope,” Scanning Microsc. Suppl., 8, 13-23; discussion 23-14 (1994).

    CAS  PubMed  Google Scholar 

  8. R. A. Buchanan, R. D. Leapman, M. F. O’Connell, et al., “Quantitative scanning transmission electron microscopy of ultrathin cryosections: subcellular organelles in rapidly frozen liver and cerebellar cortex,” J. Struct. Biol., 110, 244-255 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. R. D. Leapman, and S. B. Andrews, “Analysis of directly frozen macromolecules and tissues in the field-emission STEM,” J. Microsc., 161, 3-19 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. L. D. Pozzo-Miller, N. B. Pivovarova, J. A. Connor, et al., “Correlated measurements of free and total intracellular calcium concentration in central nervous system neurons,” Microsc. Res. Tech., 46, 370-379 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. E. Neher, “The use of fura-2 for estimating Ca buffers and Ca fluxes,” Neuropharmacology, 34, 1423-1442 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. R. D. Leapman, S. Q. Sun, J. A. Hunt, and S. B. Andrews, “Biological electron energy loss spectroscopy in the field-emission scanning transmission electron microscope,” Scanning Microsc. Suppl., 8, 245-258; discussion 258-249 (1994).

    CAS  PubMed  Google Scholar 

  13. H. Shuman, and A. P. Somlyo, “Electron energy loss analysis of near-trace-element concentrations of calcium,” Ultramicroscopy, 21, 23-32 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. A. B. Borle, “An overview of techniques for the measurement of calcium distribution, calcium fluxes, and cytosolic free calcium in mammalian cells,” Environ. Health Perspect., 84, 45-56 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. T. Uchikawa, and A. B. Borle, “Studies of calcium-45 desaturation from kidney slices in flow-through chambers,” Am. J. Physiol., 234, R34-38 (1978).

    CAS  PubMed  Google Scholar 

  16. A. Takahashi, P. Camacho, J. D. Lechleiter, and B. Herman, “Measurement of intracellular calcium,” Physiol. Rev., 79, 1089-1125 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. S. Baudet, L. Hove-Madsen, and D. M. Bers, “How to make and use calcium-specific mini- and microelectrodes,” Methods Cell Biol., 40, 93-113 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. S. Q. Wang, L. S. Song, E. G. Lakatta, and H. Cheng, “Ca2+ signalling between single L-type Ca2+ channels and ryanodine receptors in heart cells,” Nature, 410, 592-596 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. B. L. Sabatini, and W. G. Regehr, “Optical measurement of presynaptic calcium currents,” Biophys. J., 74, 1549-1563 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. S. M. Baylor, W. K. Chandler, and M. W. Marshall, “Calcium release and sarcoplasmic reticulum membrane potential in frog skeletal muscle fibres,” J. Physiol., 348, 209-238 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. G. Brum, E. Rios, and E. Stefani, “Effects of extracellular calcium on calcium movements of excitation-contraction coupling in frog skeletal muscle fibres,” J. Physiol., 398, 441-473 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. O. Delbono, and G. Meissner, “Sarcoplasmic reticulum Ca2+ release in rat slow- and fast-twitch muscles,” J. Membr. Biol., 151, 123-130 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. J. Garcia, and M. F. Schneider, “Calcium transients and calcium release in rat fast-twitch skeletal muscle fibres,” J. Physiol., 463, 709-728 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. W. Melzer, E. Rios, and M.F. Schneider, “A general procedure for determining the rate of calcium release from the sarcoplasmic reticulum in skeletal muscle fibers,” Biophys. J., 51, 849-863 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. N. Shirokova, J. Garcia, G. Pizarro, and E. Rios, “Ca2+ release from the sarcoplasmic reticulum compared in amphibian and mammalian skeletal muscle,” J. Gen. Physiol., 107, 1-18 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. S. M. Baylor, W. K. Chandler, and M. W. Marshall, “Sarcoplasmic reticulum calcium release in frog skeletal muscle fibres estimated from Arsenazo III calcium transients,” J. Physiol., 344, 625-666 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. W. Melzer, E. Rios, and M. F. Schneider, “Time course of calcium release and removal in skeletal muscle fibers,” Biophys. J., 45, 637-641 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. E. Rios, M. D. Stern, A. Gonzalez, et al., “Calcium release flux underlying Ca2+ sparks of frog skeletal muscle,” J. Gen. Physiol., 114, 31-48 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. L. Figueroa, V. M. Shkryl, J. Zhou, et al., “Synthetic localized calcium transients directly probe signalling mechanisms in skeletal muscle,” J. Physiol., 590, 1389-1411 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. H. Cheng, W. J. Lederer, and M. B. Cannell, “Calcium sparks: elementary events underlying excitationcontraction coupling in heart muscle,” Science, 262, 740-744 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. A. Tsugorka, E. Rios, and L.A. Blatter, “Imaging elementary events of calcium release in skeletal muscle cells,” Science, 269, 1723-1726 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. I. Parker, and I. Ivorra, “Localized all-or-none calcium liberation by inositol trisphosphate,” Science, 250, 977-979 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. D. J. Santiago, J. W. Curran, D. M. Bers, et al., “Ca sparks do not explain all ryanodine receptor-mediated SR Ca leak in mouse ventricular myocytes,” Biophys. J., 98, 2111-2120 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. V. M. Shkryl, L. A. Blatter, and E. Rios, “Properties of Ca2+ sparks revealed by four-dimensional confocal imaging of cardiac muscle,” J. Gen. Physiol., 139, 189-207 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. C. H. Kong, D. R. Laver, and M. B. Cannell, “Extraction of sub-microscopic Ca fluxes from blurred and noisy fluorescent indicator images with a detailed model fitting approach,” PLoS Comput. Biol., 9, e1002931 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. C. Kettlun, A. Gonzalez, E. Rios, and M. Fill, “Unitary Ca2+ current through mammalian cardiac and amphibian skeletal muscle ryanodine receptor channels under nearphysiological ionic conditions,” J. Gen. Physiol., 122, 407-417 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. M. E. Larkum, S. Watanabe, T. Nakamura, et al., “Synaptically activated Ca2+ waves in layer 2/3 and layer 5 rat neocortical pyramidal neurons,” J. Physiol., 549, 471-488 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. L. D. Pozzo Miller, J. J. Petrozzino, G. Golarai, and J. A. Connor, “Ca2+ release from intracellular stores induced by afferent stimulation of CA3 pyramidal neurons in hippocampal slices,” J. Neurophysiol., 76, 554-562 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. A. Verkhratsky, “Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons,” Physiol. Rev., 85, 201-279 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. I. Llano, J. Gonzalez, C. Caputo, et al., “Presynaptic calcium stores underlie large-amplitude miniature IPSCs and spontaneous calcium transients,” Nat. Neurosci., 3, 1256-1265 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. C. Lohmann, A. Finski, and T. Bonhoeffer, “Local calcium transients regulate the spontaneous motility of dendritic filopodia,” Nat. Neurosci., 8, 305-312 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. S. Manita, and W. N. Ross, “Synaptic activation and membrane potential changes modulate the frequency of spontaneous elementary Ca2+ release events in the dendrites of pyramidal neurons,” J. Neurosci., 29, 7833-7845 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. R. Rizzuto, and T. Pozzan, “Microdomains of intracellular Ca2+: molecular determinants and functional consequences,” Physiol. Rev., 86, 369-408 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. C. M. Niswender, and P. J. Conn, “Metabotropic glutamate receptors: physiology, pharmacology, and disease,” Annu. Rev. Pharmacol. Toxicol., 50, 295-322 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. M. Kano, O. Garaschuk, A. Verkhratsky, and A. Konnerth, “Ryanodine receptor-mediated intracellular calcium release in rat cerebellar Purkinje neurones,” J. Physiol., 487, 1-16 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. R. W. Tsien, and R. Y. Tsien, “Calcium channels, stores, and oscillations,” Annu. Rev. Cell Biol., 6, 715-760 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. M. J. Berridge, “Inositol trisphosphate and calcium signalling,” Nature, 361, 315-325 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. T. Nakamura, J. G. Barbara, K. Nakamura, and W. N. Ross, “Synergistic release of Ca2+ from IP3-sensitive stores evoked by synaptic activation of mGluRs paired with backpropagating action potentials,” Neuron, 24, 727-737 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. E. Neher, and T. Sakaba, “Multiple roles of calcium ions in the regulation of neurotransmitter release,” Neuron, 59, 861-872 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. C. Grienberger, and A. Konnerth, “Imaging calcium in neurons,” Neuron, 73, 862-885 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. R. S. Zucker, “Calcium- and activity-dependent synaptic plasticity,” Curr. Opin. Neurobiol., 9, 305-313 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. S. Koizumi, M. D. Bootman, L. K. Bobanovic et al., “Characterization of elementary Ca2+ release signals in NGF-differentiated PC12 cells and hippocampal neurons,” Neuron, 22, 125-137 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Shkryl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkryl, V.M. Intracellular Calcium Fluxes in Excitable Cells. Neurophysiology 49, 384–392 (2017). https://doi.org/10.1007/s11062-018-9698-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-018-9698-2

Keywords

Navigation