Skip to main content

Advertisement

Log in

Effects of Aging and Noise Exposure on Auditory Brainstem Responses and Number of Presynaptic Ribbons in Inner Hair Cells of C57BL/6J Mice

  • Published:
Neurophysiology Aims and scope

C57BL/6J mice develop age-related hearing loss (HL) early in life. The influence of aging and noise exposure on the number of presynaptic structures in inner hair cells of C57BL/6J mice has not been studied. We monitored auditory brainstem responses, ABRs, in C57BL/6J mice over time and assessed changes in the number of inner hair cell presynaptic ribbons. Multifaceted verification of the effects of aging and noise exposure on hearing in the C57BL/6J strain was performed. The HL was additively increased by noise exposure in 5-week-old mice. The earliest change observed was a decrease in the amplitude of the ABR first wave. Hair cells and spiral ganglion neurons were also lost. Immunohistochemistry and high-resolution confocal microscopy revealed decreased numbers of CtBP2-positive structures in the inner hair cells localized in other than those in the low-frequency region of the cochlea. On the other hand, the influence of acute noise exposure on the inner hair cell ribbons was observed only within the highest-frequency area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Yueh, N. Shapiro, C. H. MacLean, and P. G. Shekelle, “Screening and management of adult hearing loss in primary care: scientific review,” J. Am. Med. Assoc. 289, 1976-1985 (2003).

    Article  Google Scholar 

  2. F. R. Lin, R. Thorpe, S. Gordon-Salant, and L. Ferrucci, “Hearing loss prevalence and risk factors among older adults in the United States,” J. Gerontol. Biol. Sci. Med. Sci., 66, 582-590 (2011).

    Article  Google Scholar 

  3. S. G. Kujawa and M. C. Liberman, “Acceleration of agerelated hearing loss by early noise exposure: evidence of a misspent youth,” J. Neurosci. 26, 2115-2123 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. E. Daniel, “Noise and hearing loss: a review,” J. School Health, 77, No. 5, 225-231 (2007).

    Article  PubMed  Google Scholar 

  5. D. O. Mikaelian, “Development and degeneration of hearing in the C57/b16 mouse: relation of electrophysiologic responses from the round window and cochlear nucleus to cochlear anatomy and behavioral responses,” Laryngoscope, 89, 1-15 (1979).

    Article  CAS  PubMed  Google Scholar 

  6. K. R. Henry and R. A. Chole, “Genotypic differences in behavioral, physiological and anatomical expressions of age-related hearing loss in the laboratory mouse,” Audiology, 19, 369-383 (1980).

    Article  CAS  PubMed  Google Scholar 

  7. J. F. Willott, J. Kulig, and T. Satterfield, “The acoustic startle response in DBA/2 and C57BL/6 mice: relationship to auditory neuronal response properties and hearing impairment,” Hear. Res., 16, 161-167 (1984).

    Article  CAS  PubMed  Google Scholar 

  8. J. F. Willott, “Effects of aging, hearing loss, and anatomical location on thresholds of inferior colliculus neurons in C57BL/6 and CBA mice,” J. Neurophysiol., 56, 391-408 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. K. Parham and J. F. Willott, “Acoustic startle response in young and aging C57BL/6J and CBA/J mice,” Behav. Neurosci., 102, 881 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. V. P. Spongr, D. G. Flood, R. D. Frisina, and R. J. Salvi, “Quantitative measures of hair cell loss in CBA and C57BL/6 mice throughout their life spans,” J. Acoust. Soc. Am., 101, 3546-3553 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. R. R. Davis, J. K. Newlander, X. B. Ling, et al., “Genetic basis for susceptibility to noise-induced hearing loss in mice,” Hear. Res., 155, 82-90 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. J. F. Willott, J. G. Turner, S. Carlson, et al., “The BALB/c mouse as an animal model for progressive sensorineural hearing loss,” Hear. Res., 115, 162-174 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. L. C. Erway, J. F. Willott, J. R. Archer, and D. E. Harrison, “Genetics of age-related hearing loss in mice: I. Inbred and F1 hybrid strains,” Hear. Res., 65, 125-132 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. K. Noben-Trauth, Q. Y. Zheng, and K. R. Johnson, “Association of cadherin 23 with polygenic inheritance and genetic modification of sensorineural hearing loss,” Natl. Genet., 35, 21-23 (2003).

    Article  CAS  Google Scholar 

  15. J. Siemens, C. Lillo, R. A. Dumont, et al., “Cadherin 23 is a component of the tip link in hair-cell stereocilia,” Nature, 428, 950-955 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. S. P. Zachary and P. A. Fuchs, “Re-emergent inhibition of cochlear inner hair cells in a mouse model of hearing loss,” J. Neurosci., 35, No. 26, 9701-9706 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. H. F. Schuknecht, The Pathology of the Ear, Harvard Univ. Press, Cambridge (1974).

    Google Scholar 

  18. H. S. Li and E. Borg, “Age-related loss of auditory sensitivity in two mouse genotypes,” Acta Otolaryngol., 111, 827-834 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. S. Hequembourg and M. C. Liberman, “Spiral ligament pathology: a major aspect of age-related cochlear degeneration in C57BL/6 mice,” J. Assoc. Res. Otolaryngol., 2, 118-129 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M. C. Liberman, “Morphological differences among radial afferent fibers in the cat cochlea: an electronmicroscopic study of serial sections,” Hear. Res., 3, 45-63 (1980).

    Article  CAS  PubMed  Google Scholar 

  21. Y. Sergeyenko, K. Lall, M. C. Liberman, and S. G. Kujawa, “Age-related cochlear synaptopathy: an earlyonset contributor to auditory functional decline,” J. Neurosci., 33, 13686-13694 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. A. C. Furman, S. G. Kujawa, and M. C. Liberman, “Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates,” J. Neurophysiol., 110, 577-586 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. D. L. Newman, L. M. Fisher, J. Ohmen, et al., “GRM7 association with age-related hearing loss and its extension to additional features of presbycusis,” Hear. Res., 294, 125-132 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. S. F. Maison, H. Usubuchi, and M. C. Liberman., “Efferent feedback minimizes cochlear neuropathy from moderate noise exposure,” J. Neurosci., 33, 5542-5552 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. S. Stamataki, H. W. Francis, M. Lehar, et al., “Synaptic alterations at inner hair cells precede spiral ganglion cell loss in aging C57BL/6J mice,” Hear. Res., 221, 104-118 (2006).

    Article  PubMed  Google Scholar 

  26. H. J. G. Gundersen, “The nucleator,” J. Microscop., 151, 3-21 (1988).

    Article  CAS  Google Scholar 

  27. A. Møller, P. Strange, and H. J. G. Gundersen, “Efficient estimation of cell volume and number using the nucleator and the disector,” J. Microscop., 159, 61-71 (1990).

    Article  Google Scholar 

  28. T. Tandrup, “A method for unbiased and efficient estimation of number and mean volume of specified neuron subtypes in rat dorsal root ganglion,” J. Comp. Neurol., 329, 269-276 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. F. Watanabe, M. Kirkegaard, S. Matsumoto, et al., “Signaling through erbB receptors is a critical functional regulator in the mature cochlea,” Eur. J. Neurosci., 32, 717-724 (2010).

    Article  PubMed  Google Scholar 

  30. P. Mannström, B. Ulfhake, M. Kirkegaard, and M. Ulfendahl, “Dietary restriction reduces age-related degeneration of stria vascularis in the inner ear of the rat,” Exp. Gerontol., 48, 1173-1179 (2013).

    Article  PubMed  Google Scholar 

  31. H. J. G. Gundersen, T. F. Bendtsen, L. Korbo, et al., “Some new, simple and efficient stereological methods and their use in pathological research and diagnosis,” Apmis, 96, 379-394 (1988).

    Article  CAS  PubMed  Google Scholar 

  32. H. J. G. Gundersen, P. Bagger, T. F. Bendtsen, et al., “The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis,” Apmis, 96, 857-881 (1988).

    Article  CAS  PubMed  Google Scholar 

  33. H. C. Ou, G. W. Harding, and B. A. Bohne, “An anatomically based frequency–place map for the mouse cochlea,” Hear. Res., 145, 123-129 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. A. Viberg and B. Canlon, “The guide to plotting a cochleogram,” Hear. Res., 197, 1-10 (2004).

    Article  PubMed  Google Scholar 

  35. J. F. Willott, J. VandenBosche, T. Shimizu, et al., “Effects of exposing C57BL/6J mice to high-and lowfrequency augmented acoustic environments: Auditory brainstem response thresholds, cytocochleograms, anterior cochlear nucleus morphology and the role of gonadal hormones,” Hear. Res., 235, 60-71 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. R. D. Frisina and X. Zhu, “Auditory sensitivity and the outer hair cell system in the CBA mouse model of agerelated hearing loss,” Open Access Anim. Physiol., 2, 9-16 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. J. S. Buchwald and C. H. Huang, “Far-field acoustic response: origins in the cat,” Science, 189, 382-384 (1975).

    Article  CAS  PubMed  Google Scholar 

  38. S. G. Kujawa and M. C. Liberman, “Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss,” Hear. Res., 330, 191-199 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. I. Tasaki, “The electrosaltatory transmission of the nerve impulse and the effect of narcosis upon the nerve fiber,” Am. J. Physiol., 127, 211-227 (1939).

    Google Scholar 

  40. N. Y. Kiang, M. C. Liberman, and R. A. Levine, “Auditory-nerve activity in cats exposed to ototoxic drugs and high-intensity sounds,” Ann. Otol. Rhinol. Laryngol., 85, 752-768 (1976).

    Article  CAS  PubMed  Google Scholar 

  41. H. Spoendlin, “Factors inducing retrograde degeneration of the cochlear nerve,” Ann. Otol. Rhinol. Laryngol., Suppl., 112, 76-82 (1983).

  42. G. M. Cohen, J. C. Park, and J. S. Grasso, “Comparison of demyelination and neural degeneration in spiral and Scarpa’s ganglia of C57BL/6 mice,” J. Electron Microscop. Tech., 15, 165-172 (1990).

    Article  CAS  Google Scholar 

  43. T. Kurioka, M. Y. Lee, A. N. Heeringa, et al., “Selective hair cell ablation and noise exposure lead to different patterns of changes in the cochlea and the cochlear nucleus,” Neuroscience, 332, 242-257 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. H. Spoendlin, “Innervation patterns in the organ of Corti of the cat,” Acta Otolaryngol., 67, 239-254 (1969).

    Article  CAS  PubMed  Google Scholar 

  45. D. Robertson, “Functional significance of dendritic swelling after loud sounds in the guinea pig cochlea,” Hear. Res., 9, 263-278 (1983).

    Article  CAS  PubMed  Google Scholar 

  46. M. C. Liberman and N. Y. Kiang, “Acoustic trauma in cats: cochlear pathology and auditory-nerve activity,” Acta Otolaryngol., 358, 1-63 (1978).

    CAS  Google Scholar 

  47. A. M. Taberner and M. C. Liberman, “Response properties of single auditory nerve fibers in the mouse,” J. Neurophysiol., 93, 557-569 (2005).

    Article  PubMed  Google Scholar 

  48. R. A. Schmiedt, J. H. Mills, and F. A. Boettcher, “Agerelated loss of activity of auditory-nerve fibers,” J. Neurophysiol., 76, 2799-2803 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. S. G. Kujawa and M. C. Liberman, “Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss,” J. Neurosci., 29, 14077-14085 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. J. Bourien, Y. Tang, C. Batrel, et al., “Contribution of auditory nerve fibers to compound action potential of the auditory nerve,” J. Neurophysiol., 112, No. 5, 1025-1039 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. H. W. Lin, A. C. Furman, S. G. Kujawa, and M. C. Liberman, “Primary neural degeneration in the Guinea pig cochlea after reversible noise-induced threshold shift,” J. Assoc. Res. Otolaryngol., 12, 605-616 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. K. K. Ohlemiller, J. M. Lett, and P. M. Gagnon, “Cellular correlates of age-related endocochlear potential reduction in a mouse model,” Hear. Res., 220, 10-26 (2006).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. Takeda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeda, S., Mannström, P., Dash-Wagh, S. et al. Effects of Aging and Noise Exposure on Auditory Brainstem Responses and Number of Presynaptic Ribbons in Inner Hair Cells of C57BL/6J Mice. Neurophysiology 49, 316–326 (2017). https://doi.org/10.1007/s11062-018-9691-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-018-9691-9

Keywords

Navigation