Advertisement

Neurophysiology

, Volume 48, Issue 2, pp 117–121 | Cite as

Metabolic Alterations in Experimental Autoimmune Encephalomyelitis in Mice: Effects of Prior Physical Exercise

  • D. Bernardes
  • O. C. Oliveira-Lima
  • T. Vitarelli da Silva
  • M. A. Juliano
  • D. Moreira dos Santos
  • J. Carvalho-Tavares
Article

Experimental autoimmune encephalomyelitis (EAE) induces significant reduction of the body mass concomitant to sickness behavior and anorexia. We investigated whether regular physical exercise prevents metabolic alterations associated with body mass loss occurring during EAE inflammatory peak. Female C57BL/6 mice were assigned to the unexercised and exercised (trained) groups. In four weeks, EAE was induced in half of the animals in each group, and the exercise protocol was maintained until 10 days post-induction (dpi 10) completing 6 weeks of regular exercise (forced swimming). At dpi 14, the relative mass of metabolic tissues, serum levels of triglycerides, cholesterol, and glucose, glycogen contents in the muscle and liver, and muscle levels of cytokines were measured. A significantly decreased clinical score associated with attenuation of the body mass loss in exercised EAE animals, as compared to the non-exercised ones, was observed. The associated metabolic parameters were not modified by this approach, although negative correlations between some parameters and clinical score at dpi 14 were observed. Although the prior program of aerobic exercise is capable of decreasing clinical score and body mass loss, it is not sufficient to modify metabolic outcomes associated with inflammation at the EAE peak.

Keywords

experimental autoimmune encephalomyelitis (EAE) physical exercise cachexia body mass metabolic shifts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Kutzelnigg and H. Lassmann, “Pathology of multiple sclerosis and related inflammatory demyelinating diseases,” Handb. Clin. Neurol., 122, 15-58 (2014).CrossRefPubMedGoogle Scholar
  2. 2.
    M. S. Recks, K. Addicks, and S. Kuerten, “Spinal cord histopathology of MOG peptide 35-55-induced experimental autoimmune encephalomyelitis is timeand score-dependent,” Neurosci. Lett., 494, No. 3, 227-231 (2011).CrossRefPubMedGoogle Scholar
  3. 3.
    Y. Pollak, H. Ovadia, E. Orion, et al., “The EAEassociated behavioral syndrome: I. Temporal correlation with inflammatory mediators,” J. Neuroimmunol., 137, Nos. 1-2, 94-99 (2013).CrossRefGoogle Scholar
  4. 4.
    D. W. Gould, I. Lahart, A. R. Carmichael, et al., “Cancer cachexia prevention via physical exercise: molecular mechanisms”, J. Cachexia Sarcopenia Muscle, 4, No. 2, 111-124 (2013).CrossRefPubMedGoogle Scholar
  5. 5.
    D. Bernardes, O. C. Oliveira-Lima, T. Vitarelli-Silva, et al., “Differential brain and spinal cord cytokine and BDNF levels in experimental autoimmune encephalomyelitis are modulated by prior and regular exercise, “ J Neuroimmunol., 264, Nos. 1-2, 24-34 (2013).CrossRefPubMedGoogle Scholar
  6. 6.
    D. Bernardes, M. S. J. Manzoni, C. Souza, et al., “Efeitos da dieta hiperlipídica e do treinamento de natação somre o metabolismo de recuperação ao exercício em ratos,” Rev.Paul. Educ. Fís. (ISSN 0102-7549. Cessou em 2003. Continuação ISSN 1807-5509, Revista Brasileira de Educação Física e Esporte)., 18, No. 2, 191-200 (2004).Google Scholar
  7. 7.
    R. K. Dishman, H. R. Berthoud, F. W. Booth, et al., “Neurobiology of exercise,” Obesity (Silver Spring), 14, No. 3, 345-356 (2006).CrossRefGoogle Scholar
  8. 8.
    J. M. Argiles, S. Busquets, F. J. Lopez-Soriano, et al., “Are there any benefits of exercise training in cancer cachexia?” J. Cachexia Sarcopenia Muscle, 3, No. 2, 73-76 (2012). 9. W. Cendrowski, W. Szajbel, E. Waszkiewicz, and K. Niedzielska, “Serum lipid studies in multiple sclerosis,” Z. Klin. Chem. Klin. Biochem., 6, 423-425 (1968).Google Scholar
  9. 9.
    W. Cendrowski, W. Szajbel, E. Waszkiewicz, and K. Niedzielska, “Serum lipid studies in multiple sclerosis,” Z. Klin. Chem. Klin. Biochem., 6, 423-425 (1968).PubMedGoogle Scholar
  10. 10.
    J. N. Cumings, R. C. Shortman, and T. Skrbic, “Lipid studies in the blood and brain in multiple sclerosis and motor neurone disease,” J. Clin. Pathol., 18, No. 5, 641-644 (1965).CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    A. Montfoort, R. W. R. Baker, R. H. S. Thompson, and K. J. Zilkha, “Plasma phospholipids and their fatty acid composition in multiple sclerosis,” J. Neurol. Neurosurg. Psychiat., 29, No. 2, 99-102 (1966).CrossRefPubMedCentralGoogle Scholar
  12. 12.
    A. de Haan, M. R. van der Vliet, J. J. Hendriks, et al., “Changes in characteristics of rat skeletal muscle after experimental allergic encephalomyelitis,” Muscle Nerve, 29, No. 3, 369-375 (2004).CrossRefPubMedGoogle Scholar
  13. 13.
    V. Polacow and A. H. Lancha Jr., “Dietas hiperglicídicas: efeitos da substituição isoenergética de gordura por carboidratos sobre o metabolismo de lipídios, adiposidade corporal e sua associação com atividade física e com o risco de doença cardiovascular,” Arq. Bras. Endocrinol. Metab., 51, No. 3, 389-400 (2007).CrossRefGoogle Scholar
  14. 14.
    M. Buffelli, E. Pasino, and A. Cangiano, “Paralysis of rat skeletal muscle equally affects contractile properties as does permanent denervation,” J. Muscle Res. Cell Motil., 18, No. 6, 683-695 (1997).CrossRefPubMedGoogle Scholar
  15. 15.
    J. Vogt, F. Paul. O. Aktas, et al., “Lower motor neuron loss in multiple sclerosis and experimental autoimmune encephalomyelitis,” Ann. Neurol., 66, No. 3, 310-322 (2009).CrossRefPubMedGoogle Scholar
  16. 16.
    S. Deforges, J. Branchu, O. Biondi, et al., “Motoneuron survival is promoted by specific exercise in a mouse model of amyotrophic lateral sclerosis,” J. Physiol., 587, Pt. 14, 3561-3572 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    D. Bernardes, R. Brambilla, V. Bracchi-Ricard, et al. “Prior regular exercise improves clinical outcome and reduces demyelination and axonal injury in experimental autoimmune encephalomyelitis,” J. Neurochem., 136 (Suppl. 1), 63–73, (2015).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • D. Bernardes
    • 1
  • O. C. Oliveira-Lima
    • 1
  • T. Vitarelli da Silva
    • 1
  • M. A. Juliano
    • 2
  • D. Moreira dos Santos
    • 3
  • J. Carvalho-Tavares
    • 1
  1. 1.Departamento de Fisiologia e Biofísica, Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Departamento de BiofísicaUniversidade Federal de São PauloSão PauloBrazil
  3. 3.Departamento de Bioquímica e Imunologia, Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations