Advertisement

Neurophysiology

, Volume 47, Issue 6, pp 448–453 | Cite as

Effects of Bacterial Melanin on Neuronal Activity in the Rat Sensorimotor Cortex

  • T. R. Petrosyan
  • O. V. Gevorgyan
  • A. S. Hovsepyan
  • A. S. Ter-Markosyan
Article
  • 24 Downloads

We examined post-stimulation changes in the electrical activity of neurons of the rat sensorimotor cortex after intapraperitoneal injections or direct applications of bacterial melanin (a strict analog of neuromelanin). Activation of cortical neurons was evoked by high-frequency stimulation of the hindlimb peripheral nerves. The patterns of within-stimulation responses and long-lasting post-stimulation effects were rather similar in both subgroups (with systemic introductions or direct applications of melanin). Comparison of the results of previous electrophysiological experiments, where the effects of melanin on electrical activity generated by neurons of the substantia nigra pars compacta were studied, showed close similarities of the effects of this agent (mostly activating influence of bacterial melanin with the predominance of excitatory/facilitatory post-stimulation modifications of spike activity). The effects of bacterial melanin can contribute to the recovery processes in neurodegenerative diseases.

Keywords

melanin neurons of the sensorimotor cortex evoked spike activity potentiation depression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Wilczok, K. Stepien, A. Dzierzega-Lecznar, et al., “Model neuromelanins as antioxidative agents during lipid peroxidation,” Neurotox. Res., 1, No. 2, 141-147 (1999).CrossRefPubMedGoogle Scholar
  2. 2.
    M. Varas, M. Perez, M.E. Mouzon, and S.R. de Barioglio, “Melanin concentrating hormone, hippocampal nitric oxide levels and memory retention,” Peptides, 23, No. 12, 2213-2221 (2002).CrossRefPubMedGoogle Scholar
  3. 3.
    B. A. Faucheux, M. E. Martin, C. Beaumont, et al., “Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson’s disease,” J. Neurochem., 86, No. 5, 1142-1148 (2003).CrossRefPubMedGoogle Scholar
  4. 4.
    A. A. Galoyan, J. S. Sarkissian, T. K. Kipriyan, et al., “Protective effect of a new hypothalamic peptide against cobra venom and trauma induced neuronal injury,” Neurochem. Res., 26, 1023-1038 (2001).CrossRefPubMedGoogle Scholar
  5. 5.
    A. E. Aghajanyan, A. A. Hambardzumyan, A. S. Hovsepyan, et al., “Isolation, purification and physicochemical characterization of water-soluble Bacillus thuringiensis melani,” Pigment Cell Res., 18, No. 2, 130-135 (2005).CrossRefPubMedGoogle Scholar
  6. 6.
    M. H. Monfils and G. C. Teskey, “Skilled-learninginduced potentiation in rat sensorimotor cortex : a transient form of behavioral long-term potentiation,” Neuroscience, 125, No. 2, 329-336 (2004).CrossRefPubMedGoogle Scholar
  7. 7.
    T. R Petrosyan, V. A. Chavushyan, and A. S. Hovsepyan, “Bacterial melanin increases electrical activity of neurons in substantia nigra pars compacta,” J. Neur. Transmiss., 121, 259-265 (2014).Google Scholar
  8. 8.
    Y. Komatsu, K. Toyama, J. Maeda, and H. Sakaguchi, “Long term potentiation investigated in a slice preparation of striate cortex of young kittens,” Neurosci. Lett., 26, 269-274 (1981).CrossRefPubMedGoogle Scholar
  9. 9.
    R. M. Sulkhanyan and T. S. Khachatryan, “Comparison of the protection against neuronal injury by hypothalamic peptides and by dexamethasone,” Neurochem. Res., 25, 1567-1578 (2000).CrossRefPubMedGoogle Scholar
  10. 10.
    D. L. Berliner, R. L. Erwin, and D. R. McGee, “Methods of treating Parkinson’s disease using melanin,” US Patent 5,210,076 A (1993).Google Scholar
  11. 11.
    T. R. Petrosyan and A. S. Hovsepyan, “Bacterial melanin crosses the blood–brain barrier in rat experimental model,” Fluids Barriers CNS, 11, No. 20, 1-7 (2014).Google Scholar
  12. 12.
    D. J. Froc, C. A. Capman, C. Trepel, and R. J. Racine, “Long-term depression and depotentiation in the sensorimotor cortex of freely moving rat,” J. Neurosci., 20, No. 1, 438-445 (2000).PubMedGoogle Scholar
  13. 13.
    R. A. Gerren and N. M. Weinberger, “Long term potentiation in the magnocellular medial geniculate nucleus of anesthetized cat,” Brain Res., 265, 138-142 (1983).CrossRefPubMedGoogle Scholar
  14. 14.
    O.V. Gevorkyan, “Neuronal activity of sensorimotor cortex on the mesencephalic reticular formation stimulation,” Biol. J. Armenia, 40, No. 12, 993-997 (1987).Google Scholar
  15. 15.
    O. V. Gevorkyan, I. B. Meliksetyan, A. S. Ovsepyan, and A. S. Sagiyan, “Effects of BT-melanin on recovery of operant conditioned reflexes in rats after ablation of the sensorimotor cortex,” Neurosci. Behav. Physiol., 37, No. 5, 471-476 (2007).CrossRefPubMedGoogle Scholar
  16. 16.
    S. P. Hicks and C. I. D’Amato, “Locating corticospinal neurons by retrograde axonal transport of horseradish peroxidase,” Exp. Neurol., 56, 410-420 (1977).CrossRefPubMedGoogle Scholar
  17. 17.
    A. A. Galoyan, J. S. Sarkissian, T. K. Kipriyan, et al., “Melanin concentrating hormone depresses synaptic activity of glutamate and GABA neurons from rat lateral hypothalamus,” J. Physiol., 15, No. 533, 237-252 (2001).Google Scholar
  18. 18.
    M. H. Monfils and G. C. Teskey, “Induction of long-term depression is associated with decreased dendritic length and spine density in layers III and V of sensoromotor neocortex,” Synapse, 53, No. 2, 114-121 (2004).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • T. R. Petrosyan
    • 1
  • O. V. Gevorgyan
    • 2
  • A. S. Hovsepyan
    • 3
  • A. S. Ter-Markosyan
    • 1
  1. 1.Yerevan State Medical UniversityYerevanRepublic of Armenia
  2. 2.Institute of Physiology of the NAS of ArmeniaYerevanRepublic of Armenia
  3. 3.SPC “Armbiotechnology” of the NAS of ArmeniaYerevanRepublic of Armenia

Personalised recommendations