, Volume 47, Issue 4, pp 295–301 | Cite as

Inactivation of the Nucl. Accumbens Core Exerts No Effect on Nicotine-Induced Conditioned Place Preference

  • S. B. Hosseini
  • H. Sahraei
  • A. Mohammadi
  • B. Hatef
  • G. H. Meftahi
  • D. Chalabi-Yani
  • H. Alibeig
  • S. Sadeghi-Gharajehdaghi
  • M. Ranjabaran

Effects of transient inhibition of the core part of the nucl. accumbens (NAcC) by lidocaine on nicotineinduced conditioned place preference in male Wistar rats were examined. Lidocaine (2%) was injected into the NAcC of nicotine-conditioned animals before each nicotine i.p. injection. On the test day, behavior of the animals in a two-lcompartment apparatus was recorded during 10 min. Results revealed that i.p. injections of nicotine (1.0 or 1.5 mg/kg) induced place preference. Transient lidocaine-induced inhibition of one or both sides of the NAcC did not change place preference but changed the numbers of compartment crossings, rearings, and sniffings. Inhibition of the left part and both parts of the structure reduced sniffing and increased place preference; inhibition of the right part of the nucleus increased the intensity of this phenomena.


nicotine conditioned place preference lidocaine core part of the nucl. accumbens shell part of the nucl. accumbens rat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Di Chiara, “Nucleus accumbens shell and core dopamine: differential role in behavior and addiction,” Behav. Brain Res., 137, Nos. 1/2, 75-114 (2002).Google Scholar
  2. 2.
    R. Spanagel and F. Welss, “The dopamine hypothesis of reward: Past and current status,” Trends Neurosci., 22, No. 11, 521-527 (1999).CrossRefPubMedGoogle Scholar
  3. 3.
    P. Di Ciano, R. N. Cardinal, R. A. Cowell, et al., “Differential involvement of NMDA, AMPA/kainate, and dopamine receptors in the nucleus accumbens core in the acquisition and preformance of Pavlovian approach behavior,” J. Neurosci., 21 (23), 9471-9477 (2001).PubMedGoogle Scholar
  4. 4.
    L. Heimer, D. S. Zahm, L. Churchill, et al., “Specificity in the projection patterns of accumbal core and shell in the rat,” Neuroscience, 41, No. 1, 89-125 (1991).Google Scholar
  5. 5.
    D. S. Zahm, “Functional-anatomical implications of the nucleus accumbens core and shell subterritories,” Ann. New York Acad. Sci., 877, 113-128 (1999).CrossRefGoogle Scholar
  6. 6.
    J. M. Brundege and J. T. Williams, “Differential modulation of nucleus accumbens synapses,” J. Neurophysiol., 88, No. 1, 142-151(2002).Google Scholar
  7. 7.
    D. Chalabi-Yani1, H. Sahraei, G. H. Meftahi, et al., “Effect of transient inactivation of ventral tegmental area on the expression and acquisition of nicotineinduced conditioned place preference in rats,” Iran. Biomed. J., 19, No. 4, 214-219 (2015).Google Scholar
  8. 8.
    K. S. Smith, A. J. Tindell, J. W. Aldridge, and K. C. Berridge, “Ventral pallidum roles in reward and motivation,” Behav. Brain Res., 196, No. 2, 155-167 (2009).PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    S. R. Sesack and V. M. Pickel, “In the rat medial nucleus accumbens, hippocampal and catecholaminergic terminals converge on spiny neurons and are in apposition to each other,” Brain Res., 527, No. 2, 266-279 (1990).CrossRefPubMedGoogle Scholar
  10. 10.
    A. L. Jongen-Relo, H. J. Groenewegen, and P. Voorn, “Evidence for a multi-compartmental histochemical organization of the nucleus accumbens in the rat,” J. Comp. Neurol., 337, No. 2, 267-276 (1993).CrossRefPubMedGoogle Scholar
  11. 11.
    G. E. Meredith, C. M. Pennartz, and H. J. Groenewegen, “The cellular framework for chemical signaling in the nucleus accumbens,” Prog. Brain Res., 99, 3-24 (1993).CrossRefPubMedGoogle Scholar
  12. 12.
    G. E. Meredith, “The synaptic framework for chemical signaling in nucleus accumbens,” Ann. New York Acad. Sci., 877, 140-156 (1999).CrossRefGoogle Scholar
  13. 13.
    F. E. Pontieri, G. Tanda, F. Orzi, and G. Di Chiara, “Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs,” Nature, 382, No. 6588, 255-257 (1996).Google Scholar
  14. 14.
    M. H. Esmaeili, H. Sahraei, H. Ali-Beig, et al., “Transient inactivation of the nucleus accumbens reduces both the expression and acquisition of morphine-induced conditioned place preference in rats,” Pharmacol. Biochem. Behav., 102, No. 2, 249-256 (2012).CrossRefPubMedGoogle Scholar
  15. 15.
    I. Belcheva, S. Belcheva, V. V. Petkov, and V. D. Petkov, “Asymmetry in behavioral responses to cholecystokinin microinjected into rat nucleus accumbens and amygdala,” Neuropharmacology, 33, No. 8, 995-1002 (1994).Google Scholar
  16. 16.
    I. Belcheva, J. B. Bryer, S. E. Starkstein, et al., “Hemispheric asymmetry in behavioral response to D1 and D2 receptor agonists in the nucleus accumbens,” Brain Res., 533, No. 2, 286-291 (1990).CrossRefPubMedGoogle Scholar
  17. 17.
    M. Moaddab, A. Haghparast, and M. Hassanpour- Ezatti, “Effects of reversible inactivation of the ventral tegmental area on the acquisition and expression of morphine-induced conditioned place preference in the rat,” Behav. Brain Res., 198, No. 2, 466-471 (2009).Google Scholar
  18. 18.
    G. Paxinos and D. Watson, The Rat Brain in Stereotaxic Coordinates, Acad. Press, New York (1987).Google Scholar
  19. 19.
    H. Sahraei, L. Etemadi, P. Rostami, et al., “GABA(B) receptors within the ventral tegmental area are involved in the expression and acquisition of morphineinduced place preference in morphine-sensitized rats,” Pharmacol. Biochem. Behav., 91, No. 3, 409-416 (2009).CrossRefPubMedGoogle Scholar
  20. 20.
    E. Fedele, G. Varnier, M. A. Ansaldo, and M. Raiteri, “Nicotine administration stimulates the in vivo N-methyl-D-aspartate receptor/nitric oxide/cyclic GMP pathway in rat hippocampus through glutamate release,” Br. J. Pharmacol., 125, No. 5, 1042-1048 (1998).PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    A. A. Barzegari-Sorkheh, S. Oryan, and H. Sahraei, “The role of nitric oxide in nicotine reward: A place preference study in rats,” Afr. J. Pharm. Pharmacol., 6(34), 2544-2553 (2012).CrossRefGoogle Scholar
  22. 22.
    M. Shoaib, I. P. Stolerman, and R. C. Kumar, “Nicotineinduced place preferences following prior nicotine exposure in rats,” Psychopharmacology, 113, Nos. 3/4, 445-452 (1994).Google Scholar
  23. 23.
    T. M. Tzschentke, “Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade,” Addict. Biol., 12, Nos. 3/4, 227-462 (2007).Google Scholar
  24. 24.
    G. Di Chiara, V. Bassareo, S. Fenu, et al., “Dopamine and drug addiction: the nucleus accumbens shell connection,” Neuropharmacology, 47, Suppl. 1, 227-241 (2004).Google Scholar
  25. 25.
    R. Diaz Heijtz and F. Xavier Castellanos, “Differential effects of a selective dopamine D1-like receptor agonist on motor activity and c-fos expression in the frontalstriatal circuitry of SHR and Wistar-Kyoto rats,” Behav. Brain Funct., 2:18 (2006).Google Scholar
  26. 26.
    M. B. Eklund, L. M. Johansson, K. Uvnäs-Moberg, and L. Arborelius, “Differential effects of repeated long and brief maternal separation on behavior and neuroendocrine parameters in Wistar dams,” Behav. Brain Res., 203, No. 1, 69-75 (2009).CrossRefPubMedGoogle Scholar
  27. 27.
    A. Kepecs, N. Uchida, and Z. F. Mainen, “The sniff as a unit of olfactory processing,” Chem. Senses, 31, No. 2, 167-179 (2006).CrossRefPubMedGoogle Scholar
  28. 28.
    F. Luther, “The research component in orthodontic education: sniffing out rats (SnOR),” J. Orthod., 32, No. 2, 73-74 (2005).CrossRefPubMedGoogle Scholar
  29. 29.
    M. A. Gerrits, P. Petromilli, G. Westenberg, et al., “Decrease in basal dopamine levels in the nucleus accumbens shell during daily drug-seeking behavior in rats,” Brain Res., 924, No. 2, 141-150 (2002).CrossRefPubMedGoogle Scholar
  30. 30.
    L. H. Sellings and P. B. Clarke, “Segregation of amphetamine reward and locomotor stimulation between nucleus accumbens medial shell and core,” J. Neurosci., 23, No. 15, 6295-6303 (2003).PubMedGoogle Scholar
  31. 31.
    M. T. Bardo, S. L. Bowling, J. K. Rowlett, et al., “Environmental enrichment attenuates locomotor sensitization, but not in vitro dopamine release, induced by amphetamine,” Pharmacol. Biochem. Behav., 51, Nos. 2/3, 397–405 (1995).Google Scholar
  32. 32.
    M. T. Bardo, P. M. Robinet, and R. F. Hammer, Jr., “Effect of differential rearing environments on morphine-induced behaviors, opioid receptors and dopamine synthesis,” Neuropharmacology, 36, No. 2, 251–259 (1997).Google Scholar
  33. 33.
    J. M. Bossert, G. C. Poles, K. A. Wihbey, et al., “Differential effects of blockade of dopamine D1-family receptors in nucleus accumbens core or shell on reinstatement of heroin seeking induced by contextual and discrete cues,” J. Neurosci., 27, No. 46, 12655-12663 (2007).PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    S. Ikemoto, M. Qin, and Z. H. Liu, “The functional divide for primary reinforcement of D-amphetamine lies between the medial and lateral ventral striatum: Is the division of the nucleus accumbens core, shell, and olfactory tubercle valid?” J. Neurosci., 25, No. 20, 5061-5065 (2005).PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • S. B. Hosseini
    • 1
  • H. Sahraei
    • 2
  • A. Mohammadi
    • 2
  • B. Hatef
    • 2
  • G. H. Meftahi
    • 2
  • D. Chalabi-Yani
    • 1
  • H. Alibeig
    • 1
  • S. Sadeghi-Gharajehdaghi
    • 1
  • M. Ranjabaran
    • 2
  1. 1.Department of Biology, School of Biological SciencesIslamic Azad University, North Tehran BranchTehranIran
  2. 2.Neuroscience Research CenterBaqiyatallah (a.s.) University of Medical SciencesTehranIran

Personalised recommendations