Advertisement

Neurophysiology

, Volume 47, Issue 4, pp 264–270 | Cite as

Spike Timing-Dependent Plasticity in the CA1 Pyramidal Neuron in a Modeled Hippocampal Circuit

  • H. X. Ren
  • Sh. Q. Liu
  • X. C. Zhang
  • Y. J. Zeng
Article
  • 67 Downloads

Spike timing-dependent plasticity (STDP) plays an important role in sculpting information-storing circuits in the hippocampus, since motor learning and memory are thought to be closely linked with this classical plasticity. To further understand the information delivery in a hippocampus circuit, we build a computational model to study the potential role of linear changes in the synaptic weight and synaptic number. Several key results have been obtained: (i) Changes in the synaptic weight and numbers lead to different long-term modifications; (ii) the first paired spiking from two neurons significantly influences the adjusted subsequent paired spiking; the pre-post spiking pair strengthens the following paired spiking; however, the post-pre spiking pair depresses the subsequent spiking; (iii) when the synaptic weight and synaptic numbers are changed, the interval of the first spiking pair may undergo reduction, and (iv) when we stimulate a stellate neuron weakly or decrease the capacitance of the CA1 pyramidal neuron, LTP is more easily produced than LTD; on the contrary, LTD is more easily produced in an opposite situation; increase in the synaptic numbers can promote activation of the CA1 pyramidal neuron.

Keywords

computational model hippocampus neuronal circuits spike timing-dependent synaptic plasticity (STDP) synaptic weight and number 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    T. V. Bliss and T. Lomo, “Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path,” J. Physiol., 232, 331-356 (1973).PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    R. C. Malenka and S. A. Siegelbaum, Synaptic Plasticity, Johns Hopkins Univ. Press (2001).Google Scholar
  3. 3.
    S. J. Martin, P. D. Grimwood, and R. G. Morris, “Synaptic plasticity and memory: an evaluation of the hypothesis,” Annu. Rev. Neurosci., 23, 649-711 (2000).CrossRefPubMedGoogle Scholar
  4. 4.
    Y. Dan and M. M. Poo, “Spike timing-dependent plasticity: from synapse to perception,” Physiol. Rev., 86, 1033-1048 (2006).CrossRefPubMedGoogle Scholar
  5. 5.
    W. B. Levy and O. Steward, “Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus,” Neuroscience, 8, No. 4, 791-797 (1983).CrossRefPubMedGoogle Scholar
  6. 6.
    G. Q. Bi and M. M. Poo, “Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type,” J. Neurosci., 18, No. 24, 10464-10472 (1998).PubMedGoogle Scholar
  7. 7.
    C. Natalia and Y. Dan, “Spike timing-dependent plasticity: A Hebbian learning rule,” Annu. Rev. Neurosci., 31, 25-46 (2008).CrossRefGoogle Scholar
  8. 8.
    C. Vassilis, C. Stuart, and P. G. Bruce, “Encoding and retrieval in a model of the hippocampal CA1 microcircuit,” Hippocampus, 20, 423-446 (2010).Google Scholar
  9. 9.
    M. Royeck, M. T. Horstmann, S. Remy, et al., “Role of axonal NaV1.6 sodium channels in action potential initiation of CA1 pyramidal neurons,” J. Neurophysiol., 100, No. 4, 2361-2380 (2008).CrossRefPubMedGoogle Scholar
  10. 10.
    H. Peter, E. Daniel, B. Angela, et al., “Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3,” Hippocampus, 18, No. 4, 411-424 (2008).CrossRefGoogle Scholar
  11. 11.
    W. M. Yamada, C. Koch, and P. R. Adams, Multiple Channels and Calcium Dynamics, MIT Press, Cambridge (1987).Google Scholar
  12. 12.
    M. Migliore and G. M. Shepherd, “Dendritic action potentials connect distributed dendrodendritic microcircuits,” J. Comput. Neurosci., 24, 207-221 (2008).PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    R. Michel, M. T. Horstmann, R. Stefan, et al., “Role of axonal Na V 1.6 sodium channels in action potential initiation of CA1 pyramidal neurons,” J. Physiol., 4, 2361-2380 (2008).Google Scholar
  14. 14.
    L. Wang and S. Q. Liu, “Neural circuit and its functional roles in cerebellar cortex,” Neurosci. Bull., 27, 3, 173-184 (2011).CrossRefPubMedGoogle Scholar
  15. 15.
    J. R. Hughes, “Post-tetanic potentiation,” Physiol. Rev., 38, No. 1, 91-113 (1958).PubMedGoogle Scholar
  16. 16.
    T. D. Joshua, T. David, and A. S. Steven, “A role for synaptic inputs at distal dendrites: Instructive signals for hippocampal long-term plasticity,” Neuron, 56, 866-879 (2007).CrossRefGoogle Scholar
  17. 17.
    J. Tim, R. Alex, L. K. William, and S. Nelson, “Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons,” Nat. Neurosci., 8, 1667-1676 (2005).CrossRefGoogle Scholar
  18. 18.
    R. R. Clarke and J. P. Stephen, “Spatial segregation of neuronal calcium signals encodes different forms of LTP in rat hippocampus,” J. Physiol., 570, No. 1, 97-111 (2006).CrossRefGoogle Scholar
  19. 19.
    T. Jarsky, A. Roxin, W. L. Kath, and N. Spruston, “Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons,” Nat. Neurosci., 8, No. 12, 1667-1676 (2005).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • H. X. Ren
    • 1
  • Sh. Q. Liu
    • 1
  • X. C. Zhang
    • 1
  • Y. J. Zeng
    • 2
  1. 1.South China University of Technology, Department of MathematicsGuangzhouChina
  2. 2.Beijing University of Technology, Biomedical Engineering CenterBeijingChina

Personalised recommendations