Skip to main content

Advertisement

Log in

Effects of Aging and Experimentally Induced Modifications of Signal Pathways on Insulin-Induced Shifts of Glucose Metabolism in the Rat Neocortex

  • Published:
Neurophysiology Aims and scope

We studied insulin-induced intensification of glucose absorption and glycogen formation in the neocortex of young and old rats. In young animals, the corresponding shifts were clearly expressed; in old rats, insulin exerted nearly no stimulatory action on the processes of glucose metabolism in neocortical tissues. It was hypothesized that this is due to the age-related enhancement of the level of ceramides resulting in changes of the lipid spectrum of the cell membranes and also due to suppression of key components of signal pathways of insulin in the brain (such as Akt/protein kinase В, ARF, protein kinase С, and phospholipase D). These events disturb the signal cascade of the hormone and process of formation of the physiological response. An increase in the amount of ceramides in neocortical tissues of young animals after the action of exogenous С2 ceramide or palmitic acid (precursor of sphingolipids) was accompanied by suppression of the intensification of glucose absorption and insulin-stimulated formation of glycogen. Taking into account a significant increase in the amount of ceramides in the neocortex of old animals (this was shown in our earlier study), we believe that age-related accumulation of ceramide is an important reason for the development of insulin resistance of glucose metabolism in the CNS of old organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Pellerin and P. J. Magistretti, “Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization,” Proc. Natl. Acad. Sci. USA, 91, No. 22, 10625-10629 (1994).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. C. Choeiri, W. Staines, and C. Messier, “Immunohistochemical localization and quantification of glucose transporters in the mouse brain,” Neuroscience, 111, No. 1, 19-34 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. A. M. Brant, T. J. Jess, G. Milligan, et al., “Immunological analysis of glucose transporters expressed in different regions of the rat brain and central nervous system,” Biochem. Biophys. Res. Commun., 192, No. 3, 1297-1302 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. T. Kayano, H. Fukumoto, R. L. Eddy, et al., “Evidence for a family of human glucose transporter-like proteins. Sequence and gene localization of a protein expressed in fetal skeletal muscle and other tissues,” J. Biol. Chem., 263, No. 30, 15245-15248 (1988).

    CAS  PubMed  Google Scholar 

  5. G. W. Gould, A. M. Brant, B. B. Kahn, et al., “Expression of the brain-type glucose transporter is restricted to brain and neuronal cells in mice,” Diabetologia, 35, No. 4, 304-309 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. G. A. Dienel, “Fueling and imaging brain activation,” Am. Soc. Neurochem. Neuro., 4(5), e00093 (2012); doi: 10.1042/AN20120021.

    Google Scholar 

  7. L. K. Bak, A. Schousboe, U. Sonnewald, and H. S. Waagepetersen, “Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons,” J. Cerebr. Blood Flow Metab., 26, No. 10, 1285-1297 (2006).

    Article  CAS  Google Scholar 

  8. C. Howarth, P. Gleeson, and D. Attwell, “Updated energy budgets for neural computation in the neocortex and cerebellum,” J. Cerebr. Blood Flow Metab., 32, 1222-1232 (2012).

    Article  CAS  Google Scholar 

  9. M. V. Ivannikov, M. Sugimori, and R. R. Llinás, “Calcium clearance and its energy requirements in cerebellar neurons,” Cell Calcium, 47, 507-513 (2010).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. M. Dinuzzo, S. Mangia, B. Maraviglia, and F. Giove, “The role of astrocytic glycogen in supporting the energetics of neuronal activity,” Neurochem. Res., 37, 2432-2438 (2012).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. A. Suzuki, S. A. Stern, O. Bozdagi, et al., “Astrocyteneuron lactate transport is required for long-term memory formation,” Cell, 144, 810-823 (2011).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. G. S. Watson and S. Craft, “Modulation of memory by insulin and glucose: neuropsychological observations in Alzheimer’s disease,” Eur. J. Pharmacol., 490, Nos. 1/3, 97-113 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Z. Laron, “Insulin and the brain,” Arch. Physiol. Biochem., 115, No. 2, 112-116 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. W. Zhao, H. Chen, H. Xu, et al., “Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats,” J. Biol. Chem., 274, No. 49, 34893-34902 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. R. Schechter, T. Yanovitch, M. Abboud, et al., “Effects of brain endogenous insulin on neurofilament and MAPK in fetal rat neuron cell cultures,” Brain Res., 808, No. 2, 270-278 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. J. Havrankova, J. Roth, and M. Brownstein, “Insulin receptors are widely distributed in the central nervous system of the rat,” Nature, 272, No. 56, 827-829 (1978).

    Article  CAS  PubMed  Google Scholar 

  17. E. Araki, M. A. Lipes, M. E. Patti, et al., “Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene,” Nature, 372, No. 6502, 186-190 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. L. Plum, M. Schubert, and J. C. Brüning, “The role of insulin receptor signaling in the brain,” Trends Endocrinol. Metab., 16, No. 2, 59-65 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. C. A. Grillo, G. G. Piroli, R. M. Hendry, and L. P. Reagan, “Insulin-stimulated translocation of GLUT4 to the plasma membrane in rat hippocampus is PI3-kinase dependent,” Brain Res., 1296, 35-45 (2009).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. S. M. de la Monte, “Insulin resistance and Alzheimer’s disease,” BMB Rep., 42, No. 8, 475-481 (2009).

    Article  PubMed  Google Scholar 

  21. S. M. de la Monte, E. Re, L. Longato, and M. Tong, “Dysfunctional pro-ceramide, ER stress, and insulin/IGF signaling networks with progression of Alzheimer’s disease,” J. Alzheimer’s Dis., 30, Suppl. 2, S217-S229 (2012).

    Google Scholar 

  22. D. Kapogiannis and M. P. Mattson, “Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease,” Lancet Neurol., 10, 187-198 (2011).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. J. A. Chavez, W. L. Holland, J. Bar, et al., “Acid ceramidase overexpression prevents the inhibitory effects of saturated fatty acids on insulin signaling,” J. Biol. Chem., 280, No. 20, 20148-20153 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. M. Heni, A. M. Hennige, A. Peter, et al., “Insulin promotes glycogen storage and cell proliferation in primary human astrocytes,” PLoS ONE, 6, No. 6, e21594 (2011).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. O. N. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randal, “Protein measurement with the folin phenol reagent,” J. Biol. Chem., 193, 365-375 (1951).

    Google Scholar 

  26. N. A. Babenko and V. S. Kharchenko, “Ceramides inhibit phospholipase D-dependent insulin signaling in liver cells of old rats,” Biochemistry, 77, No. 2, 180-186 (2012).

    CAS  PubMed  Google Scholar 

  27. N. A. Babenko, L. K. Hassouneh, V. S. Kharchenko, and V. V. Garkavenko, “Vitamin E prevents the agedependent and palmitate-induced disturbances of sphingolipid turnover in liver cells,” Age (Dordr.), 34, 905-915 (2012).

    Article  CAS  Google Scholar 

  28. N. A. Babenko and V. S. Kharchenko, “Role of ceramides in disruption of insulin signaling in the rat diaphragm under in vivo and in vitro conditions,” Probl. Endokrinol. Patol., No. 1, 37-43 (2009).

  29. N. A. Babenko and V. S. Kharchenko, “Age-related changes in the phospholipase D-dependent signal pathway of insulin in the rat neocortex,” Neurophysiology, 45, No. 2, 120-127 (2013).

    Article  CAS  Google Scholar 

  30. N. A. Babenko and Y. A. Semenova, “Effects of long-term fish oil-enriched diet on the sphingolipid metabolism in brain of old rats,” Exp. Gerontol., 45, No. 5, 375-380 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. G. A. Salvador, S. J. Pasquare, M. G. Ilincheta de Boschero, and N. M. Giusto, “Differential modulation of phospholipase D and phosphatidate phosphohydrolase during aging in rat cerebral cortex synaptosomes,” Exp. Gerontol., 37, No. 4, 543-552 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Y. Xu, B. R. Rubin, C. M. Orme, et al., “Dual-mode of insulin action controls GLUT4 vesicle exocytosis,” J. Cell Biol., 193, No. 4, 643-653 (2011).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. I. N. Singh, L. M. Stromberg, S. G. Bourgoin, et al., “Ceramide inhibition of mammalian phospholipase D1 and D2 activities is antagonized by phosphatidylinositol 4,5-bisphosphate,” Biochemistry, 40, 11227-11233 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. A. Abousalham, C. Liossis, L. O’Brien, and D. N. Brindley, “Cell-permeable ceramides prevent the activation of phospholipase D by ADP-ribosylation factor and RhoA,” J. Biol. Chem., 272, 1069-1075 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. A. S. Mebarek, H. Komati, F. Naro, et al., “Inhibition of de novo ceramide synthesis upregulates phospholipase D and enhances myogenic differentiation,” J. Cell. Sci., 120, Part 3, 407-416 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. A. Gidwani, H. A. Brown, D. Holowka, and B. Baird, “Disruption of lipid order by short-chain ceramides correlates with inhibition of phospholipase D and downstream signaling by FcepsilonRI,” J. Cell Sci., 116, 3177-3187 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. S. Patil, D. Balu, J. Melrose, and C. Chan, “Brain regionspecificity of palmitic acid-induced abnormalities associated with Alzheimer’s disease,” BMC Res. Notes, 4, 1-20 (2008).

    Google Scholar 

  38. N. D. Ridgway and D. L. Merriam, “Metabolism of short-chain ceramide and dihydroceramide analogues in Chinese hamster ovary (CHO) cells,” Biochim. Biophys. Acta, 1256, No. 1, 57-70 (1995).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Babenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babenko, N.A., Kharchenko, V.S. Effects of Aging and Experimentally Induced Modifications of Signal Pathways on Insulin-Induced Shifts of Glucose Metabolism in the Rat Neocortex. Neurophysiology 47, 16–22 (2015). https://doi.org/10.1007/s11062-015-9491-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-015-9491-4

Keywords

Navigation