Advertisement

Neurophysiology

, Volume 47, Issue 1, pp 16–22 | Cite as

Effects of Aging and Experimentally Induced Modifications of Signal Pathways on Insulin-Induced Shifts of Glucose Metabolism in the Rat Neocortex

  • N. A. Babenko
  • V. S. Kharchenko
Article

We studied insulin-induced intensification of glucose absorption and glycogen formation in the neocortex of young and old rats. In young animals, the corresponding shifts were clearly expressed; in old rats, insulin exerted nearly no stimulatory action on the processes of glucose metabolism in neocortical tissues. It was hypothesized that this is due to the age-related enhancement of the level of ceramides resulting in changes of the lipid spectrum of the cell membranes and also due to suppression of key components of signal pathways of insulin in the brain (such as Akt/protein kinase В, ARF, protein kinase С, and phospholipase D). These events disturb the signal cascade of the hormone and process of formation of the physiological response. An increase in the amount of ceramides in neocortical tissues of young animals after the action of exogenous С2 ceramide or palmitic acid (precursor of sphingolipids) was accompanied by suppression of the intensification of glucose absorption and insulin-stimulated formation of glycogen. Taking into account a significant increase in the amount of ceramides in the neocortex of old animals (this was shown in our earlier study), we believe that age-related accumulation of ceramide is an important reason for the development of insulin resistance of glucose metabolism in the CNS of old organisms.

Keywords

neocortex aging glucose glycogen insulin ceramide palmitic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Pellerin and P. J. Magistretti, “Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization,” Proc. Natl. Acad. Sci. USA, 91, No. 22, 10625-10629 (1994).CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    C. Choeiri, W. Staines, and C. Messier, “Immunohistochemical localization and quantification of glucose transporters in the mouse brain,” Neuroscience, 111, No. 1, 19-34 (2002).CrossRefPubMedGoogle Scholar
  3. 3.
    A. M. Brant, T. J. Jess, G. Milligan, et al., “Immunological analysis of glucose transporters expressed in different regions of the rat brain and central nervous system,” Biochem. Biophys. Res. Commun., 192, No. 3, 1297-1302 (1993).CrossRefPubMedGoogle Scholar
  4. 4.
    T. Kayano, H. Fukumoto, R. L. Eddy, et al., “Evidence for a family of human glucose transporter-like proteins. Sequence and gene localization of a protein expressed in fetal skeletal muscle and other tissues,” J. Biol. Chem., 263, No. 30, 15245-15248 (1988).PubMedGoogle Scholar
  5. 5.
    G. W. Gould, A. M. Brant, B. B. Kahn, et al., “Expression of the brain-type glucose transporter is restricted to brain and neuronal cells in mice,” Diabetologia, 35, No. 4, 304-309 (1992).CrossRefPubMedGoogle Scholar
  6. 6.
    G. A. Dienel, “Fueling and imaging brain activation,” Am. Soc. Neurochem. Neuro., 4(5), e00093 (2012); doi:  10.1042/AN20120021.Google Scholar
  7. 7.
    L. K. Bak, A. Schousboe, U. Sonnewald, and H. S. Waagepetersen, “Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons,” J. Cerebr. Blood Flow Metab., 26, No. 10, 1285-1297 (2006).CrossRefGoogle Scholar
  8. 8.
    C. Howarth, P. Gleeson, and D. Attwell, “Updated energy budgets for neural computation in the neocortex and cerebellum,” J. Cerebr. Blood Flow Metab., 32, 1222-1232 (2012).CrossRefGoogle Scholar
  9. 9.
    M. V. Ivannikov, M. Sugimori, and R. R. Llinás, “Calcium clearance and its energy requirements in cerebellar neurons,” Cell Calcium, 47, 507-513 (2010).CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    M. Dinuzzo, S. Mangia, B. Maraviglia, and F. Giove, “The role of astrocytic glycogen in supporting the energetics of neuronal activity,” Neurochem. Res., 37, 2432-2438 (2012).CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    A. Suzuki, S. A. Stern, O. Bozdagi, et al., “Astrocyteneuron lactate transport is required for long-term memory formation,” Cell, 144, 810-823 (2011).CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    G. S. Watson and S. Craft, “Modulation of memory by insulin and glucose: neuropsychological observations in Alzheimer’s disease,” Eur. J. Pharmacol., 490, Nos. 1/3, 97-113 (2004).CrossRefPubMedGoogle Scholar
  13. 13.
    Z. Laron, “Insulin and the brain,” Arch. Physiol. Biochem., 115, No. 2, 112-116 (2009).CrossRefPubMedGoogle Scholar
  14. 14.
    W. Zhao, H. Chen, H. Xu, et al., “Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats,” J. Biol. Chem., 274, No. 49, 34893-34902 (1999).CrossRefPubMedGoogle Scholar
  15. 15.
    R. Schechter, T. Yanovitch, M. Abboud, et al., “Effects of brain endogenous insulin on neurofilament and MAPK in fetal rat neuron cell cultures,” Brain Res., 808, No. 2, 270-278 (1998).CrossRefPubMedGoogle Scholar
  16. 16.
    J. Havrankova, J. Roth, and M. Brownstein, “Insulin receptors are widely distributed in the central nervous system of the rat,” Nature, 272, No. 56, 827-829 (1978).CrossRefPubMedGoogle Scholar
  17. 17.
    E. Araki, M. A. Lipes, M. E. Patti, et al., “Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene,” Nature, 372, No. 6502, 186-190 (1994).CrossRefPubMedGoogle Scholar
  18. 18.
    L. Plum, M. Schubert, and J. C. Brüning, “The role of insulin receptor signaling in the brain,” Trends Endocrinol. Metab., 16, No. 2, 59-65 (2005).CrossRefPubMedGoogle Scholar
  19. 19.
    C. A. Grillo, G. G. Piroli, R. M. Hendry, and L. P. Reagan, “Insulin-stimulated translocation of GLUT4 to the plasma membrane in rat hippocampus is PI3-kinase dependent,” Brain Res., 1296, 35-45 (2009).CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    S. M. de la Monte, “Insulin resistance and Alzheimer’s disease,” BMB Rep., 42, No. 8, 475-481 (2009).CrossRefPubMedGoogle Scholar
  21. 21.
    S. M. de la Monte, E. Re, L. Longato, and M. Tong, “Dysfunctional pro-ceramide, ER stress, and insulin/IGF signaling networks with progression of Alzheimer’s disease,” J. Alzheimer’s Dis., 30, Suppl. 2, S217-S229 (2012).Google Scholar
  22. 22.
    D. Kapogiannis and M. P. Mattson, “Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease,” Lancet Neurol., 10, 187-198 (2011).CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    J. A. Chavez, W. L. Holland, J. Bar, et al., “Acid ceramidase overexpression prevents the inhibitory effects of saturated fatty acids on insulin signaling,” J. Biol. Chem., 280, No. 20, 20148-20153 (2005).CrossRefPubMedGoogle Scholar
  24. 24.
    M. Heni, A. M. Hennige, A. Peter, et al., “Insulin promotes glycogen storage and cell proliferation in primary human astrocytes,” PLoS ONE, 6, No. 6, e21594 (2011).CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    O. N. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randal, “Protein measurement with the folin phenol reagent,” J. Biol. Chem., 193, 365-375 (1951).Google Scholar
  26. 26.
    N. A. Babenko and V. S. Kharchenko, “Ceramides inhibit phospholipase D-dependent insulin signaling in liver cells of old rats,” Biochemistry, 77, No. 2, 180-186 (2012).PubMedGoogle Scholar
  27. 27.
    N. A. Babenko, L. K. Hassouneh, V. S. Kharchenko, and V. V. Garkavenko, “Vitamin E prevents the agedependent and palmitate-induced disturbances of sphingolipid turnover in liver cells,” Age (Dordr.), 34, 905-915 (2012).CrossRefGoogle Scholar
  28. 28.
    N. A. Babenko and V. S. Kharchenko, “Role of ceramides in disruption of insulin signaling in the rat diaphragm under in vivo and in vitro conditions,” Probl. Endokrinol. Patol., No. 1, 37-43 (2009).Google Scholar
  29. 29.
    N. A. Babenko and V. S. Kharchenko, “Age-related changes in the phospholipase D-dependent signal pathway of insulin in the rat neocortex,” Neurophysiology, 45, No. 2, 120-127 (2013).CrossRefGoogle Scholar
  30. 30.
    N. A. Babenko and Y. A. Semenova, “Effects of long-term fish oil-enriched diet on the sphingolipid metabolism in brain of old rats,” Exp. Gerontol., 45, No. 5, 375-380 (2010).CrossRefPubMedGoogle Scholar
  31. 31.
    G. A. Salvador, S. J. Pasquare, M. G. Ilincheta de Boschero, and N. M. Giusto, “Differential modulation of phospholipase D and phosphatidate phosphohydrolase during aging in rat cerebral cortex synaptosomes,” Exp. Gerontol., 37, No. 4, 543-552 (2002).CrossRefPubMedGoogle Scholar
  32. 32.
    Y. Xu, B. R. Rubin, C. M. Orme, et al., “Dual-mode of insulin action controls GLUT4 vesicle exocytosis,” J. Cell Biol., 193, No. 4, 643-653 (2011).CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    I. N. Singh, L. M. Stromberg, S. G. Bourgoin, et al., “Ceramide inhibition of mammalian phospholipase D1 and D2 activities is antagonized by phosphatidylinositol 4,5-bisphosphate,” Biochemistry, 40, 11227-11233 (2001).CrossRefPubMedGoogle Scholar
  34. 34.
    A. Abousalham, C. Liossis, L. O’Brien, and D. N. Brindley, “Cell-permeable ceramides prevent the activation of phospholipase D by ADP-ribosylation factor and RhoA,” J. Biol. Chem., 272, 1069-1075 (1997).CrossRefPubMedGoogle Scholar
  35. 35.
    A. S. Mebarek, H. Komati, F. Naro, et al., “Inhibition of de novo ceramide synthesis upregulates phospholipase D and enhances myogenic differentiation,” J. Cell. Sci., 120, Part 3, 407-416 (2007).CrossRefPubMedGoogle Scholar
  36. 36.
    A. Gidwani, H. A. Brown, D. Holowka, and B. Baird, “Disruption of lipid order by short-chain ceramides correlates with inhibition of phospholipase D and downstream signaling by FcepsilonRI,” J. Cell Sci., 116, 3177-3187 (2003).CrossRefPubMedGoogle Scholar
  37. 37.
    S. Patil, D. Balu, J. Melrose, and C. Chan, “Brain regionspecificity of palmitic acid-induced abnormalities associated with Alzheimer’s disease,” BMC Res. Notes, 4, 1-20 (2008).Google Scholar
  38. 38.
    N. D. Ridgway and D. L. Merriam, “Metabolism of short-chain ceramide and dihydroceramide analogues in Chinese hamster ovary (CHO) cells,” Biochim. Biophys. Acta, 1256, No. 1, 57-70 (1995).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Research Institute of Biology at the Karazin Khar’kiv National UniversityKhar’kivUkraine

Personalised recommendations