, Volume 46, Issue 2, pp 120–125 | Cite as

Effects of Agents Influencing Serotonergic and Cannabinoid Systems on Memory in the Avoidance Test in Mice

  • N. Rezapoor
  • S. Shahidi
  • A. Komaki

Adult male albino mice in a shuttle box system were used for examination of learning for avoidance behavior and its deactivation. We measured the step-through latency in the acquisition of the task (STLa) before injections of the drugs tested (fluoxetine and URB597, a serotonin reuptake inhibitor, SSRI, and an agent preventing decomposition of endocannabinoids, respectively) and the respective latency 24 h after injections of these agents (STLr); total time spent in the dark compartment (TDC) was also measured in these situations. In mice that received fluoxetine (5, 10, and 20 mg/kg), the STLr were longer than those in the control, and the difference was significant at 10 mg/kg. Injections of URB597 decreased the STLr, and at medium and high doses (0.3 and 1.0 mg/kg) significant differences were observed. All doses of fluoxetine led to significant decreases in the TDC values, while injections of URB597 increased this index (at 0.3 and 1.0 mg/kg, the shifts were significant). Combined injections of fluoxetine and URB597 (5 + 0.1, 10 + 0.3, and 20 + 1.0 mg/kg) increased the STLr values and decreased TDC values to levels comparable with those at isolated injections of fluoxetine in the respective doses. Thus, fluoxetine improves memory, while URB597 impaired it; fluoxetine is capable of nullifying the negative effects of URB597.


serotonin endocannabinoids inhibitory avoidance test acquisition retention memory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Vaswani, F. Linda, and S. Ramesh, “Role of serotonin reuptake inhibitors in psychiatric disorders: a comprehensive review,” Neuropsychopharmacol. Biol. Psychiat., 27, 85-102 (2003).CrossRefGoogle Scholar
  2. 2.
    L. Oliveira Alvares, B. P. Genro, F. Diehl, and J. A. Quillfeldt, “Differential role of the hippocampal endocannabinoid system in the memory consolidation and retrieval mechanisms,” Neurobiol. Learn. Mem., 90, 1-9 (2008).PubMedCrossRefGoogle Scholar
  3. 3.
    R. Takahashi, F. Pamplona, and M. Fernandes, “The cannabinoid antagonist SR141716A facilitates memory acquisition and consolidation in the mouse elevated T-maze,” Neurosci. Lett., 380, 270-275 (2005).PubMedCrossRefGoogle Scholar
  4. 4.
    Y. Zhang, K. Raap, F. Garcia, et al., “Long-term fluoxetine produces behavioral anxiolytic effects without inhibiting neuroendocrine responses to conditioned stress in rats,” Brain Res., 855, No. 1, 58-66 (2000).PubMedCrossRefGoogle Scholar
  5. 5.
    A. Mowla, M. Mosavinasab, and A. Pani, “Does fluoxetine have any effect on the cognition of patients with mild cognitive impairment? A double-blind, placebo-controlled, clinical trial,” J. Clin. Psychopharmacol., 27, No. 1, 67-70 (2007).PubMedCrossRefGoogle Scholar
  6. 6.
    I. Hervás, M.Y. Vilaró, L. Romero, et al., “Desensitization of 5-HT(1A) autoreceptors by a low chronic fluoxetine dose. Effect of the concurrent administration of WAY-100635,” Neuropsychopharmacology, 24, 11-20 (2001).Google Scholar
  7. 7.
    V. D. Petkov and R. Kehayov, “Effects of agonists and antagonists of some serotonin-receptor subtypes on memory and their modulation by the 5-HT-uptake inhibitor fluoxetine,” Acta Physiol. Pharmacol. Bulg., 20, Nos. 3/4, 83-90 (1994).Google Scholar
  8. 8.
    S. Fernández-Pérez, D. M. Pache, and R. D. Sewell, “Co-administration of fluoxetine and WAY100635 improves short-term memory function,” Eur. J. Pharmacol., 522, Nos. 1/3, 78-83 (2005).Google Scholar
  9. 9.
    C. J. Nelson, W. P. Jordan, and R. T. Bohan, “Daily fluoxetine administration impairs avoidance learning in the rat without altering sensory thresholds,” Neuropsychopharmacol. Biol. Psychiat., 21, 1043-1057 (1997).CrossRefGoogle Scholar
  10. 10.
    C. Rossi, L. A. Pini, M. L. Cupini, et al., “Endocannabinoids in platelets of chronic migraine patients and medication-overuse headache patients: relation with serotonin levels,” Eur. J. Clin. Pharmacol., 64, 1-8 (2008).PubMedCrossRefGoogle Scholar
  11. 11.
    P. Hasanein and S. Shahidi, “Effects of combined treatment with vitamins C and E on passive avoidance learning and memory in diabetic rats,” Neurobiol. Learn. Mem., 93, 472-478 (2010).PubMedCrossRefGoogle Scholar
  12. 12.
    P. Hasanein and S. Shahidi, “Preventive effect of Teucrium polium on learning and memory deficits in diabetic rats,” Med. Sci. Monit., 18, No. 1, 41-46 (2012).CrossRefGoogle Scholar
  13. 13.
    S. Shahidi, A. Komaki, M. Mahmoodi, et al., “The role of GABAergic transmission in the dentate gyrus on acquisition, consolidation and retrieval of an inhibitory avoidance learning and memory task in the rat,” Brain Res., 1204, 87-93 (2008).PubMedCrossRefGoogle Scholar
  14. 14.
    A. Köfalvi, R. T. J. Rodrigues, C. Ledent, et al., “Involvement of cannabinoid receptors in the regulation of neurotransmitter release in the rodent striatum: a combined immunochemical and pharmacological analysis,” J. Neurosci., 25, No. 1, 2874-2884 (2005).PubMedCrossRefGoogle Scholar
  15. 15.
    R. E. Hampson, J. D. Simeral, E. J. Kelly, and S. A. Deadwyler, “Tolerance to the memory disruptive effects of cannabinoids involves adaptation by hippocampal neurons,” Hippocampus, 13, No. 5, 543-556 (2003).PubMedCrossRefGoogle Scholar
  16. 16.
    P. E. Mallet and R. J. Beninger, “The cannabinoid CB1 receptor antagonist SR141716A attenuates the memory impairment produced by Δ9-tetrahydrocannabinol or anandamide,” Psychopharmacology, 140, No. 1, 11-19 (1998).PubMedCrossRefGoogle Scholar
  17. 17.
    M. Wolff and J. Leander, “SR141716A, a cannabinoid CB1 receptor antagonist improves memory in a delayed radial maze task,” Eur. J. Pharmacol., 477, No. 3, 213-217 (2003).PubMedCrossRefGoogle Scholar
  18. 18.
    M. Reibaud, M. C. Obinu, C. Ledent, et al., “Enhancement of memory in cannabinoid CB1 receptor knock-out mice,” Eur. J. Pharmacol., 379, R1-R2 (1999).PubMedCrossRefGoogle Scholar
  19. 19.
    P. E. Rueda-Orozco, C. J. Montes-Rodriguez, E. Soria-Gomes, et al., “Impairment of endocannabinoids activity in the dorsolateral striatum delays extinction of behavior in a procedural memory task in rats,” Neuropharmacology, 55, No. 1, 55-62 (2008).PubMedCrossRefGoogle Scholar
  20. 20.
    S. A. Varvel, R. J. Hamm, B. R. Martin, and A. H. Lichtman, “Differential effects of delta 9-THC on spatial reference and working memory in mice,” Psychopharmacology, 157, No. 2, 142-150 (2001).PubMedCrossRefGoogle Scholar
  21. 21.
    N. M. White and R. J. McDonald, “Multiple parallel memory systems in the brain of the rat,” Neurobiol. Learn. Mem., 77, No. 2, 125-184 (2002).PubMedCrossRefGoogle Scholar
  22. 22.
    L. De Oliveira Alvares, B. P. Genro, R. Vaz Breda, et al., “AM251, a selective antagonist of the CB1 receptor, inhibits the induction of long-term potentiation and induces retrograde amnesia in rats,” Brain Res., 1075, No. 1, 60-67 (2006).PubMedCrossRefGoogle Scholar
  23. 23.
    M. C. Carvalho, L. Albrechet-Souza, S. Masson, and M. L. Brandäo, “Changes in the biogenic amine content of the prefrontal cortex, amygdala, dorsal hippocampus, and nucleus accumbens of rats submitted to single and repeated sessions of the elevated plus-maze test,” Braz. J. Med. Biol. Res., 38, No. 12, 1857-1866 (2005).PubMedCrossRefGoogle Scholar
  24. 24.
    J. M. Casanovas, M. Lésourd, and F. Artigas, “The effect of the selective 5-HT 1A agonists alnespirone (S-20499) and 8-OH-DPAT on extracellular 5-hydroxytryptamine in different regions of rat brain,” Br. J. Pharmacol., 122, No. 4, 733-741 (1997).PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    J. H. Janssen and J. S. Andrews, “The effects of serotonergic drugs on short-term spatial memory in rats,” J. Psychopharmacol., 8, No. 3, 157-163 (1994).CrossRefGoogle Scholar
  26. 26.
    M. ElBeltagy, S. Mustafa, J. Umka, et al., “Fluoxetine improves the memory deficits caused by the chemotherapy agent 5-fluorouracil,” Behav. Brain. Res., 208, No. 1, 112-117 (2010).PubMedCrossRefGoogle Scholar
  27. 27.
    C. J. Harmer, Z. Bhagwagar, P. J. Cowen, and G. M. Goodwin, “Acute administration of citalopram facilitates memory consolidation in healthy volunteers,” Psychopharmacology, 163, No. 1, 106-110 (2002).PubMedCrossRefGoogle Scholar
  28. 28.
    J. D. Joss, R. M. Burton, and C. A. Keller, “Memory loss in a patient treated with fluoxetine,” Ann. Pharmacother., 37, No. 12, 1800-1803 (2003).PubMedCrossRefGoogle Scholar
  29. 29.
    N. Majlessi and N. Naghdi, “Impaired spatial learning in the Morris water maze induced by serotonin reuptake inhibitors in rats,” Behav. Pharmacol., 13, No. 3, 237-242 (2002).PubMedCrossRefGoogle Scholar
  30. 30.
    M. Kodama, T. Fujioka, and R. S. Duman, “Chronic olanzapine or fluoxetine administration increases cell proliferation in hippocampus and prefrontal cortex of adult rat,” Biol. Psychiat., 56, No. 8, 570-580 (2004).PubMedCrossRefGoogle Scholar
  31. 31.
    T. Lau and P. Schloss, “The cannabinoid CB1 receptor is expressed on serotonergic and dopaminergic neurons,” Eur. J. Pharmacol., 578, Nos. 2/3, 137-141 (2008).PubMedCrossRefGoogle Scholar
  32. 32.
    M. N. Hill, W. S. Ho, C. J. Hillard, and B. B. Gorzalka, “Differential effects of the antidepressants tranylcypromine and fluoxetine on limbic cannabinoid receptor binding and endocannabinoid contents,” J. Neural Transm., 115, No. 12, 1673-1679 (2008).PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    J. Chen, W. Paredes, J. H. Lowinson, and E. L. Gardner, “Delta 9-tetrahydrocannabinol enhances presynaptic dopamine efflux in medial prefrontal cortex,” Eur. J. Pharmacol., 190, No. 1/2, 259-262 (1990).PubMedGoogle Scholar
  34. 34.
    M. Matsumoto, M. Yoshioka, H. Togashi, et al., “Functional regulation by dopamine receptors of serotonin release from the rat hippocampus: in vivo microdialysis study,” Naunyn Schmiedebergs Arch. Pharmacol., 353, No. 6, 621-629 (1996).PubMedCrossRefGoogle Scholar
  35. 35.
    H. K. Kia, M. J. Brisorgueil, M. Hamon, et al., “Ultrastructural localization of 5-hydroxytryptamine1A receptors in the rat brain,” J. Neurosci. Res., 46, No. 6, 697-708 (1996).PubMedCrossRefGoogle Scholar
  36. 36.
    E. Gould, A. Beylin, P. Tanapat, et al., “Learning enhances adult neurogenesis in the hippocampal formation,” Nat. Neurosci., 2, 260-265 (1999).PubMedCrossRefGoogle Scholar
  37. 37.
    D. Panikashvili, C. Simeonidou, S. Ben-Shabat, et al., “An endogenous cannabinoid (2-AG) is neuroprotective after brain injury,” Nature, 413, No. 6855, 527-531 (2001).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Neurophysiology Research Center, Hamadan University of Medical SciencesHamadanIran

Personalised recommendations