, Volume 45, Issue 4, pp 329–339 | Cite as

Behavioral and Electrophysiological Study of Thermal and Mechanical Pain Modulation by TRP Channel Agonists

  • M. G. Tsagareli
  • I. R. Nozadze
  • G. P. Gurtskaia
  • M. I. Carstens
  • N. J. Tsiklauri
  • E. E. Carstens

Transient receptor potential channels (TRP) have been extensively investigated over the past few years. Recent findings in the field of pain have established a family of six thermoTRP channels (TRPA1, TRPM8, TRPV1, TRPV2, TRPV3, and TRPV4) that exhibits sensitivity to increases or decreases in temperature, as well as to chemical substances eliciting the respective hot or cold sensations. Such irritants include menthol, cinnamaldehyde, gingerol, mustard oil, capsaicin, camphor, eugenol, and others. In this study, we used behavioral and electrophysiological methods to investigate if mustard oil (allyl isothiocyanate, AITC) and capsaicin affect the sensitivity to thermal, innocuous cold, and mechanical stimuli in male rats. Unilateral intraplantar injections of AITC and capsaicin induced significant decreases in the latency for ipsilateral paw withdrawal from a noxious heat stimulus, i.e., heat hyperalgesia. These agents also significantly reduced the mechanical withdrawal thresholds of the injected paw, i.e., mechanical allodynia. Bilateral intraplantar injections of AITC resulted in a twophase effect on cold avoidance (thermal preference test). A low concentration of AITC (5%) did not change cold avoidance similarly to the vehicle control, while higher AITC concentrations (10 and 15%) significantly reduced cold avoidance, i.e., induced cold hypoalgesia. Capsaicin acted in almost the same manner. These results indicate that TRPA1 channels are clearly involved in pain reactions, and the TRPA1 agonist AITC enhances the heat pain sensitivity, possibly by indirectly modulating TRPV1 channels co-expressed in nociceptors with TRPA1s. In electrophysiological experiments, neuronal responses to electrical and graded mechanical and noxious thermal stimulations were tested before and after cutaneous application of AITC. Repetitive application of AITC initially increased the firing rate of spinal wide-dynamic range neurons; this was followed by rapid desensitization that persisted when AITC application was reapplied 30 min later. The responses to noxious thermal (but not to mechanical) stimuli were significantly enhanced irrespective of whether the neuron was directly activated by AITC. These findings indicate that AITC produced peripheral sensitization of heat nociceptors. Overall, our data support the role of hermosensitive TRPA1 and TRPV1 channels in pain modulation and show that these thermoTRP channels are promising targets for the development of a new group of analgesic drugs.


heat pain hyperalgesia mechanical allodynia mustard oil capsaicin nociception thermal preference 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. I. Basbaum, D. M. Bautista, G. Scherrer, and D. Julius, “Cellular and molecular mechanisms of pain,” Cell, 139, 267-284 (2009).PubMedCrossRefGoogle Scholar
  2. 2.
    K. A. Gerhold and D. M. Bautista, “Molecular and cellular mechanisms of trigeminal chemosensation,” Ann. N. Y. Acad. Sci., 1170, 184-189 (2009).PubMedCrossRefGoogle Scholar
  3. 3.
    C. Belmonte and F. Viana, “Molecular and cellular limits to somatosensory specificity,” Mol. Pain, 4, article number 14 (2008); doi: 10.1186/1744-8069-4-14.
  4. 4.
    E. Carstens, A. Klein, M. G. Tsagareli, et al., “Effects of thermo-sensitive transient receptor potential (TRP) channel agonists on the neural coding of touch, temperature and pain sensation,” in: Proceedings of the 9th International Conference “Gagra Talks,” Tbilisi (2010), pp. 267-280.Google Scholar
  5. 5.
    M. G. Tsagareli, “Behavioral testing of the effects of thermosensitive TRP channel agonists on touch, temperature, and pain sensations,” Neurophysiology, 43, No. 4, 309-320 (2011).CrossRefGoogle Scholar
  6. 6.
    M. G. Tsagareli, N. Tsiklauri, K. L. Zanotto, et al., “Behavioral evidence of heat hyperalgesia and mechanical allodynia induced by intradermal cinnamaldehyde in rats,” Neurosci. Lett., 473, 233-236 (2010).PubMedCrossRefGoogle Scholar
  7. 7.
    A. H. Klein, M. Iodi Carstens, M. G. Tsagareli, et al., “Topical application of l-menthol induces heat analgesia, mechanical allodynia, and a biphasic effect on cold sensitivity in rats,” Behav. Brain Res., 212, 179-186 (2010).PubMedCrossRefGoogle Scholar
  8. 8.
    D. M. Bautista, S.-E. Jordt, T. Nikai, et al., “TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents,” Cell, 124, 1269-1282 (2006).PubMedCrossRefGoogle Scholar
  9. 9.
    S.-E. Jordt, D. M. Bautista, H.-H. Chuang, et al., “Mustard oils and cannabinoids excite sensory nerve fibers through the TRP channel ANKTM1,” Nature, 427, 260-265 (2004).PubMedCrossRefGoogle Scholar
  10. 10.
    B. Namer, F. Seifert, H.O. Handwerker, and C. Maihöfner, “TRPA1 and TRPM8 activation in humans: effects of cinnamaldehyde and menthol,” NeuroReport, 16, 955-959 (2005).PubMedCrossRefGoogle Scholar
  11. 11.
    G. Brand and L. Jacquot, “Sensitization and desensitization to allyl isothiocyanate (mustard oil) in the nasal cavity,” Chem. Senses, 27, 593-598 (2002).PubMedCrossRefGoogle Scholar
  12. 12.
    C. T. Simons, M. I. Carstens, and E. Carstens, “Oral irritation by mustard oil: self-desensitization and crossdesensitization with capsaicin,” Chem. Senses, 28, 459-465 (2003).PubMedCrossRefGoogle Scholar
  13. 13.
    K. C. Albin, M. I. Carstens, and E. Carstens, “Modulation of oral heat and cold pain by irritant chemicals,” Chem. Senses, 33, 3-15 (2008).PubMedCrossRefGoogle Scholar
  14. 14.
    E. Carstens and T. Mitsuyo, “Neural correlates of oral irritation by mustard oil and other pungent chemicals: a hot topic,” Chem. Senses, Suppl. 1, i203-i204 (2005).Google Scholar
  15. 15.
    C. T. Simons, S. Sudo, M. Sudo, and E. Carstens, “Mustard oil has differential effects on the response of trigeminal caudalis neurons to heat and acidity,” Pain, 110, 64-71 (2004).PubMedCrossRefGoogle Scholar
  16. 16.
    K. L. Zanotto, A. W. Merrill, M. Iodi Carstens, and E. Carstens, “Neurons in superficial trigeminal subnucleus caudalis responsive to oral cooling by menthol and other irritant stimuli,” J. Neurophysiol., 97, 966-978 (2007)PubMedCrossRefGoogle Scholar
  17. 17.
    M. J. Caterina, M. A. Schumacher, M. Tominaga, et al., “The capsaicin receptor: a heat-activated ion channel in the pain pathway,” Nature, 389, 816-824 (1997).PubMedCrossRefGoogle Scholar
  18. 18.
    M. J. Caterina, A. Leffler, A. B. Malmberg, et al., “Impaired nociception and pain sensation in mice lacking the capsaicin receptor,” Science, 288, 306-313 (2000).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Caterina, “Transient receptor potential ion channels as participants in thermosensation and thermoregulation,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 292, R64-R76 (2007).PubMedCrossRefGoogle Scholar
  20. 20.
    M. Bandell, G. M. Story, S. W. Hwang, et al., “Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin,” Neuron, 41, 849-857 (2004).PubMedCrossRefGoogle Scholar
  21. 21.
    J. M. Bráz and A. I. Basbaum, “Differential ATF3 expression in dorsal root ganglion neurons reveals the profile of primary afferents engaged by diverse noxious chemical stimuli,” Pain, 150, No. 2, 290-301 (2010).PubMedCrossRefGoogle Scholar
  22. 22.
    K. Y. Kwan, A. J. Allchorne, M. A. Vollrath, et al., “TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction,” Neuron, 50, 277-289 (2006).PubMedCrossRefGoogle Scholar
  23. 23.
    L. J. Macpherson, B. H. Geierstanger, V. Viswanath, et al., “The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin,” Curr. Biol., 15, 929-934 (2005).PubMedCrossRefGoogle Scholar
  24. 24.
    K. Kobayashi, T. Fukuoka, K. Obata, et al., “Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with A-delta/C-fibers and colocalization with TRK receptors,” J. Comp. Neurol., 493, 596-606 (2005).PubMedCrossRefGoogle Scholar
  25. 25.
    T. Sugiura, M. Tominaga, H. Katsuya, and K. Mizumura, “Bradykinin lowers the threshold temperature for heat activation of vanilloid receptor 1,” J. Neurophysiol., 88, 544-548 (2002).PubMedGoogle Scholar
  26. 26.
    H.-H. Chuang, E. D. Prescott, H. Kong, et al., “Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition,” Nature, 411, 957-962 (2001).PubMedCrossRefGoogle Scholar
  27. 27.
    M. Trevisani, J. Siemens, S. Materazzi, et al., “4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1,” Proc. Natl. Acad. Sci. USA, 104, No. 3, 13519-13524 (2007).PubMedCrossRefGoogle Scholar
  28. 28.
    M. Koltzenburg, L. E. Lundberg, and H. E. Torebjork, “Dynamic and static components of mechanical hyperalgesia in human hairy skin,” Pain, 51, 207-219 (1992).PubMedCrossRefGoogle Scholar
  29. 29.
    A. Pertovaara and A. Koivisto, “TRPA1 ion channel in the spinal dorsal horn as a therapeutic target in central pain hypersensitivity and cutaneous neurogenic inflammation,” Eur. J. Pharmacol., 666, 1-4 (2011).PubMedCrossRefGoogle Scholar
  30. 30.
    H. Wei, M. Karimaa, T. Korjamo, et al., ”Transient receptor potential ankyrin 1 ion channel contributes to guarding pain and mechanical hypersensitivity in a rat model of postoperative pain,” Anesthesiology, 117, No. 1, 137-148 (2012).PubMedCrossRefGoogle Scholar
  31. 31.
    H. Wei, A. Koivisto, M. Saarnilehto, et al., “Spinal transient receptor potential ankyrin 1 channel contributes to central pain hypersensitivity in various pathophysiological conditions in the rat,” Pain, 152, 582-591 (2011).PubMedCrossRefGoogle Scholar
  32. 32.
    S. Eid, E. Crown, E. Moore, et al., “HC-030031, a TRPA1 selective antagonist, attenuates inflammatoryand neuropathy-induced mechanical hypersensitivity,” Mol. Pain, 4, 48-57 (2008).PubMedCrossRefGoogle Scholar
  33. 33.
    P. Kerstein, D. del Camino, M. Moran, et al., “Pharmacological blockade of TRPA1 inhibits mechanical firing in nociceptors,” Mol. Pain, 5, 19-31 (2009)PubMedCrossRefGoogle Scholar
  34. 34.
    Y. Karashima, K. Talavera, W. Everaerts, et al., “TRPA1 acts as a cold sensor in vitro and in vivo,” Proc. Natl. Acad. Sci. USA, 106, 1273-1278 (2009).PubMedCrossRefGoogle Scholar
  35. 35.
    G. M. Story, A. M. Peier, A. J. Reeve, et al., “ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures,” Cell, 112, 819-829 (2003).PubMedCrossRefGoogle Scholar
  36. 36.
    R. H. LaMotte, L. E. Lundberg, and H. E. Torebjork, “Pain, hyperalgesia and activity in nociceptive C units in humans after intradermal injection of capsaicin,” J. Physiol., 448, 749-764 (1992).PubMedGoogle Scholar
  37. 37.
    R. H. LaMotte, C. N. Shain, D. A. Simone, and E. F. Tsai, “Neurogenic hyperalgesia: psychophysical studies of underlying mechanisms,” J. Neurophysiol., 66, 190-211 (1991).PubMedGoogle Scholar
  38. 38.
    H. E. Torebjork, L. E. Lundberg, and R. H. LaMotte, “Central changes in processing of mechanoreceptive input in capsaicin-induced secondary hyperalgesia in humans,” J. Physiol., 448, 765-780 (1992).PubMedGoogle Scholar
  39. 39.
    E. Carstens, K. C. Albin, C. T. Simons, and M. I. Carstens, “Time course of self-desensitization of oral irritation by nicotine and capsaicin,” Chem. Senses, 32, 811-816 (2007).PubMedCrossRefGoogle Scholar
  40. 40.
    N. B. Ruparel, A. M. Patwardhan, A. N. Akopian, and K. M. Hargreaves, “Homologous and heterologous desensitization of capsaicin and mustard oil responses utilize different cellular pathways in nociceptors,” Pain, 35, 271-279 (2008).CrossRefGoogle Scholar
  41. 41.
    A. W. Merrill, J. M. Cuellar, J. H. Judd, et al., “Effects of TRPA1 agonists mustard oil and cinnamaldehyde on lumbar spinal wide-dynamic range neuronal responses to innocuous and noxious cutaneous stimuli in rats,” J. Neurophysiol., 99, 415-425 (2008).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. G. Tsagareli
    • 1
  • I. R. Nozadze
    • 1
  • G. P. Gurtskaia
    • 1
  • M. I. Carstens
    • 2
  • N. J. Tsiklauri
    • 1
  • E. E. Carstens
    • 2
  1. 1.Ivane Beritashvili Experimental Biomedicine CenterTbilisiGeorgia
  2. 2.University of California at DavisCaliforniaUSA

Personalised recommendations