, Volume 44, Issue 6, pp 464–469 | Cite as

Water Maze Spatial Learning Enhances Social Recognition Ability in Aged Rats

  • Q. Zeng
  • J. Han
  • B. Wang
  • Sh. An
  • Y. Duan
  • S. Dong
  • J. Ma
  • L. Yang
  • X. Cao

The aim of our study was to evaluate the effects of spatial learning in the hidden-platform water maze task on the process of social recognition in aged rats. The recognition in contacts with a new housing partner was compared before and after such spatial learning in the hidden-platform water maze, as well as in animals undergoing such spatial learning and simply swimming (in the water maze with no platform). The aged rats after spatial learning experience showed a significantly higher social recognition index than before spatial learning exercise and also in comparison with the aged rats possessing only swimming experience. These results indicate that spatial learning may noticeably improve the social recognition abilities in aged rats.


water maze social recognition spatial learning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. R. Epp, M. D. Spritzer, and L. A. Galea, “Hippocampusdependent learning promotes survival of new neurons in the dentate gyrus at a specific time during cell maturation,” Neuroscience, 149, No. 2, 273–285 (2007).PubMedCrossRefGoogle Scholar
  2. 2.
    H. M. Sisti, A. L. Glass, and T. J. Shors, “Neurogenesis and the spacing effect: learning over time enhances memory and the survival of new neurons,” Learn. Mem., 14, No. 5, 368–375 (2007).PubMedCrossRefGoogle Scholar
  3. 3.
    N. M. Conejo, H. Gonzalez-Pardo, G. Vallejo, and J. L. Arias, “Changes in brain oxidative metabolism induced by water maze training,” Neuroscience, 145, No. 2, 403–412 (2007).PubMedCrossRefGoogle Scholar
  4. 4.
    J. P. Lerch, A. P. Yiu, A. Martinez-Canabal, et al., “Maze training in mice induces MRI-detectable brain shape changes specific to the type of learning,” Neuroimage, 54, No. 3, 2086–2095 (2011).PubMedCrossRefGoogle Scholar
  5. 5.
    F. Gуmez-Pinilla, V. So, and J. P. Kesslak, “Spatial learning and physical activity contribute to the induction of fibroblast growth factor: neural substrates for increased cognition associated with exercise,” Neuroscience, 85, No. 1, 53–61 (1998).CrossRefGoogle Scholar
  6. 6.
    V. Ramírez-Amaya, M. L. Escobar, V. Chao, and F. Bermúdez-Rattoni, “Synaptogenesis of mossy fibers induced by spatial water maze overtraining,” Hippocampus, 9, No. 6, 631–636 (1999).PubMedCrossRefGoogle Scholar
  7. 7.
    M. Engelmann, K. Ebner, R. Landgraf, and C. T. Wotjak, “Effects of Morris water maze testing on the neuroendocrine stress response and intrahypothalamic release of vasopressin and oxytocin in the rat,” Horm. Behav., 50, No. 3, 496–501 (2006).PubMedCrossRefGoogle Scholar
  8. 8.
    L. J. Young, “The neurobiology of social recognition, approach, and avoidance,” Biol. Psychiat., 51, No. 1, 18–26 (2002).PubMedCrossRefGoogle Scholar
  9. 9.
    J. N. Ferguson, L. J. Young, and T. R. Insel, “The neuroendocrine basis of social recognition,” Front. Neuroendocrinol., 23, No. 2, 200–224 (2002).PubMedCrossRefGoogle Scholar
  10. 10.
    E. Gould, A. Beylin, P. Tanapat, et al., “Learning enhances adult neurogenesis in the hippocampal formation,” Nat. Neurosci., 2, No. 3, 260–265 (1999).PubMedCrossRefGoogle Scholar
  11. 11.
    M. Sakamoto, I. Imayoshi, T. Ohtsuka, et al., “Continuous neurogenesis in the adult forebrain is required for innate olfactory responses,” Proc. Natl. Acad. Sci. USA, 108, No. 20, 8479–8484 (2011).PubMedCrossRefGoogle Scholar
  12. 12.
    L. Lu, G. Bao, H. Chen, et al., “Modification of hippocampal neurogenesis and neuroplasticity by social environments,” Exp. Neurol., 183, No. 2, 600–609 (2003).PubMedCrossRefGoogle Scholar
  13. 13.
    X. Guan and D. E. Dluzen, “Age-related changes of social memory/recognition in male Fischer 344 rats,” Behav. Brain Res., 61, No. 1, 87–90 (1994).PubMedCrossRefGoogle Scholar
  14. 14.
    R. Morris, “Developments of a water-maze procedure for studying spatial learning in the rat,” J. Neurosci. Methods, 11, No. 1, 47–60 (1984).PubMedCrossRefGoogle Scholar
  15. 15.
    D. H. Thor and W. R. Holloway, “Social memory of the male laboratory rat,” J. Comp. Physiol. Psychol., 96, 1000–1006 (1982).CrossRefGoogle Scholar
  16. 16.
    M. Engelmann and M. Ludwig, “The activity of the hypothalamo-neurohypophyseal system in response to acute stressor exposure: neuroendocrine and electrophysiological observations,” Stress, 7, No. 2, 91–96 (2004).PubMedCrossRefGoogle Scholar
  17. 17.
    M. Ludwig and Q. J. Pittman, “Talking back: dendritic neurotransmitter release,” Trends Neurosci., 26, No. 5, 255–261 (2003).PubMedCrossRefGoogle Scholar
  18. 18.
    M. Engelmann, R. Landgraf, and C. T. Wotjak, “The hypothalamic-neurohypophyseal system regulates the hypothalamic-pituitary-adrenal axis under stress: an old concept revisited,” Front. Neuroendocrinol., 25, Nos. 3/4, 132–149 (2004).PubMedCrossRefGoogle Scholar
  19. 19.
    R. Landgraf and I. D. Neumann, “Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication.,” Front. Neuroendocrinol., 25, Nos. 3/4, 150–176 (2004).PubMedCrossRefGoogle Scholar
  20. 20.
    T. B. van Wimersma Greidanus and C. Maigret, “The role of limbic vasopressin and oxytocin in social recognition,” Brain Res., 713, Nos. 1/2, 153–159 (1996).PubMedCrossRefGoogle Scholar
  21. 21.
    C. H. Bailey and E. R. Kandel, “Structural changes accompanying memory storage,” Annu. Rev. Physiol., 55, 397–426 (1993).PubMedCrossRefGoogle Scholar
  22. 22.
    R. E. Clark and L. R. Squire, “Classical conditioning and brain systems: the role of awareness,” Science, 280, No. 5360, 77–81 (1998)PubMedCrossRefGoogle Scholar
  23. 23.
    G. Riedel, J. Micheau, A. G. Lam, et al., “Reversible neural inactivation reveals hippocampal participation in several memory processes,” Nat. Neurosci., 2, No. 10, 898–905 (1999).PubMedCrossRefGoogle Scholar
  24. 24.
    P. R. Solomon, E. R. Vander Schaaf, R. F. Thompson, and D. J. Weisz, “Hippocampus and trace conditioning of the rabbit’s classically conditioned nictitating membrane response,” Behav. Neurosci., 100, No. 5, 729–744 (1986).PubMedCrossRefGoogle Scholar
  25. 25.
    M. B. Moser, M. Trommald, and P. Andersen, “An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses,” Proc. Natl. Acad. Sci. USA, 91, No. 26, 12673–12675 (1994).PubMedCrossRefGoogle Scholar
  26. 26.
    B. Leuner, J. Falduto, and T. J. Shors, “Associative memory formation increases the observation of dendritic spines in the hippocampus,” J. Neurosci., 23, No. 2, 659–665 (2003).PubMedGoogle Scholar
  27. 27.
    S. Corkin, “Lasting consequences of bilateral medial temporal lobectomy: Clinical course and experimental findings in H.M,” Semin. Neurol., 4, No. 2, 249–259 (1984).CrossRefGoogle Scholar
  28. 28.
    H. Maaswinkel, A. M. Baars, W. H. Gispen, and B. M. Spruijt, “Roles of the basolateral amygdala and hippocampus in social recognition in rats,” Physiol. Behav., 60, No. 1, 55–63 (1996).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Q. Zeng
    • 1
  • J. Han
    • 1
  • B. Wang
    • 1
  • Sh. An
    • 1
  • Y. Duan
    • 1
  • S. Dong
    • 1
  • J. Ma
    • 1
  • L. Yang
    • 1
  • X. Cao
    • 1
  1. 1.Key Laboratory of Brain Functional Genomics (Ministry of Education) and Shanghai Key Laboratory of Brain Functional GenomicsEast China Normal UniversityShanghaiChina

Personalised recommendations