Skip to main content
Log in

Water Maze Spatial Learning Enhances Social Recognition Ability in Aged Rats

  • Published:
Neurophysiology Aims and scope

The aim of our study was to evaluate the effects of spatial learning in the hidden-platform water maze task on the process of social recognition in aged rats. The recognition in contacts with a new housing partner was compared before and after such spatial learning in the hidden-platform water maze, as well as in animals undergoing such spatial learning and simply swimming (in the water maze with no platform). The aged rats after spatial learning experience showed a significantly higher social recognition index than before spatial learning exercise and also in comparison with the aged rats possessing only swimming experience. These results indicate that spatial learning may noticeably improve the social recognition abilities in aged rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. R. Epp, M. D. Spritzer, and L. A. Galea, “Hippocampusdependent learning promotes survival of new neurons in the dentate gyrus at a specific time during cell maturation,” Neuroscience, 149, No. 2, 273–285 (2007).

    Article  PubMed  CAS  Google Scholar 

  2. H. M. Sisti, A. L. Glass, and T. J. Shors, “Neurogenesis and the spacing effect: learning over time enhances memory and the survival of new neurons,” Learn. Mem., 14, No. 5, 368–375 (2007).

    Article  PubMed  Google Scholar 

  3. N. M. Conejo, H. Gonzalez-Pardo, G. Vallejo, and J. L. Arias, “Changes in brain oxidative metabolism induced by water maze training,” Neuroscience, 145, No. 2, 403–412 (2007).

    Article  PubMed  CAS  Google Scholar 

  4. J. P. Lerch, A. P. Yiu, A. Martinez-Canabal, et al., “Maze training in mice induces MRI-detectable brain shape changes specific to the type of learning,” Neuroimage, 54, No. 3, 2086–2095 (2011).

    Article  PubMed  Google Scholar 

  5. F. Gуmez-Pinilla, V. So, and J. P. Kesslak, “Spatial learning and physical activity contribute to the induction of fibroblast growth factor: neural substrates for increased cognition associated with exercise,” Neuroscience, 85, No. 1, 53–61 (1998).

    Article  Google Scholar 

  6. V. Ramírez-Amaya, M. L. Escobar, V. Chao, and F. Bermúdez-Rattoni, “Synaptogenesis of mossy fibers induced by spatial water maze overtraining,” Hippocampus, 9, No. 6, 631–636 (1999).

    Article  PubMed  Google Scholar 

  7. M. Engelmann, K. Ebner, R. Landgraf, and C. T. Wotjak, “Effects of Morris water maze testing on the neuroendocrine stress response and intrahypothalamic release of vasopressin and oxytocin in the rat,” Horm. Behav., 50, No. 3, 496–501 (2006).

    Article  PubMed  CAS  Google Scholar 

  8. L. J. Young, “The neurobiology of social recognition, approach, and avoidance,” Biol. Psychiat., 51, No. 1, 18–26 (2002).

    Article  PubMed  Google Scholar 

  9. J. N. Ferguson, L. J. Young, and T. R. Insel, “The neuroendocrine basis of social recognition,” Front. Neuroendocrinol., 23, No. 2, 200–224 (2002).

    Article  PubMed  CAS  Google Scholar 

  10. E. Gould, A. Beylin, P. Tanapat, et al., “Learning enhances adult neurogenesis in the hippocampal formation,” Nat. Neurosci., 2, No. 3, 260–265 (1999).

    Article  PubMed  CAS  Google Scholar 

  11. M. Sakamoto, I. Imayoshi, T. Ohtsuka, et al., “Continuous neurogenesis in the adult forebrain is required for innate olfactory responses,” Proc. Natl. Acad. Sci. USA, 108, No. 20, 8479–8484 (2011).

    Article  PubMed  CAS  Google Scholar 

  12. L. Lu, G. Bao, H. Chen, et al., “Modification of hippocampal neurogenesis and neuroplasticity by social environments,” Exp. Neurol., 183, No. 2, 600–609 (2003).

    Article  PubMed  Google Scholar 

  13. X. Guan and D. E. Dluzen, “Age-related changes of social memory/recognition in male Fischer 344 rats,” Behav. Brain Res., 61, No. 1, 87–90 (1994).

    Article  PubMed  CAS  Google Scholar 

  14. R. Morris, “Developments of a water-maze procedure for studying spatial learning in the rat,” J. Neurosci. Methods, 11, No. 1, 47–60 (1984).

    Article  PubMed  CAS  Google Scholar 

  15. D. H. Thor and W. R. Holloway, “Social memory of the male laboratory rat,” J. Comp. Physiol. Psychol., 96, 1000–1006 (1982).

    Article  Google Scholar 

  16. M. Engelmann and M. Ludwig, “The activity of the hypothalamo-neurohypophyseal system in response to acute stressor exposure: neuroendocrine and electrophysiological observations,” Stress, 7, No. 2, 91–96 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. M. Ludwig and Q. J. Pittman, “Talking back: dendritic neurotransmitter release,” Trends Neurosci., 26, No. 5, 255–261 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. M. Engelmann, R. Landgraf, and C. T. Wotjak, “The hypothalamic-neurohypophyseal system regulates the hypothalamic-pituitary-adrenal axis under stress: an old concept revisited,” Front. Neuroendocrinol., 25, Nos. 3/4, 132–149 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. R. Landgraf and I. D. Neumann, “Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication.,” Front. Neuroendocrinol., 25, Nos. 3/4, 150–176 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. T. B. van Wimersma Greidanus and C. Maigret, “The role of limbic vasopressin and oxytocin in social recognition,” Brain Res., 713, Nos. 1/2, 153–159 (1996).

    Article  PubMed  Google Scholar 

  21. C. H. Bailey and E. R. Kandel, “Structural changes accompanying memory storage,” Annu. Rev. Physiol., 55, 397–426 (1993).

    Article  PubMed  CAS  Google Scholar 

  22. R. E. Clark and L. R. Squire, “Classical conditioning and brain systems: the role of awareness,” Science, 280, No. 5360, 77–81 (1998)

    Article  PubMed  CAS  Google Scholar 

  23. G. Riedel, J. Micheau, A. G. Lam, et al., “Reversible neural inactivation reveals hippocampal participation in several memory processes,” Nat. Neurosci., 2, No. 10, 898–905 (1999).

    Article  PubMed  CAS  Google Scholar 

  24. P. R. Solomon, E. R. Vander Schaaf, R. F. Thompson, and D. J. Weisz, “Hippocampus and trace conditioning of the rabbit’s classically conditioned nictitating membrane response,” Behav. Neurosci., 100, No. 5, 729–744 (1986).

    Article  PubMed  CAS  Google Scholar 

  25. M. B. Moser, M. Trommald, and P. Andersen, “An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses,” Proc. Natl. Acad. Sci. USA, 91, No. 26, 12673–12675 (1994).

    Article  PubMed  CAS  Google Scholar 

  26. B. Leuner, J. Falduto, and T. J. Shors, “Associative memory formation increases the observation of dendritic spines in the hippocampus,” J. Neurosci., 23, No. 2, 659–665 (2003).

    PubMed  CAS  Google Scholar 

  27. S. Corkin, “Lasting consequences of bilateral medial temporal lobectomy: Clinical course and experimental findings in H.M,” Semin. Neurol., 4, No. 2, 249–259 (1984).

    Article  Google Scholar 

  28. H. Maaswinkel, A. M. Baars, W. H. Gispen, and B. M. Spruijt, “Roles of the basolateral amygdala and hippocampus in social recognition in rats,” Physiol. Behav., 60, No. 1, 55–63 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, Q., Han, J., Wang, B. et al. Water Maze Spatial Learning Enhances Social Recognition Ability in Aged Rats. Neurophysiology 44, 464–469 (2012). https://doi.org/10.1007/s11062-012-9319-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-012-9319-4

Keywords

Navigation